Advertisement

Network-Related Challenges and Insights from Neuroscience

  • Charles Peck
  • James Kozloski
  • Guillermo Cecchi
  • Sean Hill
  • Felix Schürmann
  • Henry Markram
  • Ravi Rao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)

Abstract

At nearly every spatio-temporal scale and level of integration, the brain may be studied as a network of nearly unrivaled complexity. The network perspective provides valuable insights into the structure and function of the brain. In turn, the structure and function of the brain provide insights into the nature and capabilities of networks. As a consequence, neuroscience provides a rich offering of network-related challenges and insights for those designing networks to solve complex problems. This paper explores techniques for extracting and characterizing the networks of the brain, classification of brain function based on networks derived from fMRI, and specific challenges, such as the disambiguation of classification network representations, and functional self-organization of cortical networks. This exploration visits theory and data driven neural system modeling validated respectively by capabilities and biological experiments, analysis of biological data, and theoretical analysis of static networks. Finally, techniques that build upon the network perspective are presented.

Keywords

neuroscience modeling analysis neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anwar, H., Riachi, I., Hill, S., Schürmann, F., Markram, H.: Capturing neuron morphological diversity. In: De Schutter, E. (ed.) Computational Neuroscience: Realistic Modeling for Experimentalists, 2nd edn. (to appear, 2008)Google Scholar
  2. 2.
    Bednar, J.A., Miikkulainen, R.: Neurocomputing 52-54, 473–480 (2003)Google Scholar
  3. 3.
    Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)CrossRefGoogle Scholar
  4. 4.
    Cecchi, G.A., et al.: Identifying directed links in large scale functional networks: application to brain fMRI. BMC Cell Biology 8(suppl. 1), 5 (2007)CrossRefGoogle Scholar
  5. 5.
    Doya, K., Kimura, H., Kawato, M.: Neural Mechanisms of Learning and Control. IEEE Control Systems Magazine, 42–54 (August 2001)Google Scholar
  6. 6.
    Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., Segev, I.: A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience 1, 1 (2007)Google Scholar
  7. 7.
    Eguiluz, V.M., et al.: Scale-free functional brain networks. Physical Review Letters 94, 018102 (2005)CrossRefGoogle Scholar
  8. 8.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping Volume 2(4), 189–210 (2004)CrossRefGoogle Scholar
  9. 9.
    Gray, C.M., Singer, W.: Proc. Natl. Acad. Sci. USA 86, 1698–1702 (1989)Google Scholar
  10. 10.
    Greicius, M.D., et al.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. PNAS 100, 253–258 (2003)CrossRefGoogle Scholar
  11. 11.
    Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D., Wiesel, T.N.: Nature 324(6095), 361–364 (1986)Google Scholar
  12. 12.
    Bonhoeffer, T., Grinvald, A.: Nature 353, 429–431 (1991)Google Scholar
  13. 13.
    Hikosaka, O., et al.: Neurobiology of Learning and Memory 70, 127–149 (1998)Google Scholar
  14. 14.
    Hill, S.L., Chapochnikov, N., Druckmann, S., Gidon, A., Hay, E., Mace, A., Ramaswamy, R., Ranjan, R., Riachi, I., Schürmann, F., Srinivisan, K., Tränkler, T., Markram, H.: The Blue Brain Project: Calibrating a model of the neocortical column. Program 752.17. In: 2007 Neuroscience Meeting Planner, Society for Neuroscience, San Diego (2007)Google Scholar
  15. 15.
    Kandel, E.R., Schwartz, J.H., Jessup, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)Google Scholar
  16. 16.
    Koch, C., Segev, I. (eds.): Methods in Neuronal Modeling: From Ions to Networks, 2nd edn. MIT Press, Cambridge (1998)Google Scholar
  17. 17.
    Kozloski, J., Hamzei-Sichani, F., Yuste, R.: Stereotyped Position of Local Synaptic Targets in Neocortex. Science 293(5531), 868–872 (2001)CrossRefGoogle Scholar
  18. 18.
    Kozloski, J., Cecchi, G.A., Peck, C.C., Rao, A.R.: Topographic Infomax in a Neural Multigrid. ISNN (2), 500–509 (2007)Google Scholar
  19. 19.
    Kozloski, J., Sfyrakis, K., Hill, S., Schürmann, F., Markram, H.: Identifying, tabulating, and analyzing contacts between branched neuron morphologies. IBM Journal special issue on Applications of Massively Parallel Systems (to appear, 2008)Google Scholar
  20. 20.
    Kwong, K.K., et al.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992)CrossRefGoogle Scholar
  21. 21.
    Linsker, R.: From Basic Network Principles to Neural Architecture: Emergence of Orientation Columns. PNAS 83, 8779–8783 (1986)CrossRefGoogle Scholar
  22. 22.
    Linsker, R.: Local synaptic learning rules suffice to maximise mutual information in a linear network. Neural Computation 4, 691–702 (1992)CrossRefGoogle Scholar
  23. 23.
    Linsker, R.: A local learning rule that enables information maximization for arbitrary input distributions. Neural Computation 9, 1661–1665 (1997)CrossRefGoogle Scholar
  24. 24.
    Von der Malsburg, C.: The what and why of binding: The modeler’s perspective. Neuron, 95–104 (1999)Google Scholar
  25. 25.
    Markram, H., Lübke, J., Frotscher, M., Roth, A., Sakmann, B.: Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500(Pt 2), 409–440 (1997)CrossRefGoogle Scholar
  26. 26.
    Markram, H.: The Blue Brain Project. Nat. Rev. Neurosci. 7(2), 153–160 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Newman, E.J.: The structure and function of complex networks. SIAM Rev. 45, 167 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Obermayer, K., Sejnowski, T. (eds.): Self-Organizing Map Formation: Foundations of Neural Computation. MIT Press, Cambridge (2001)Google Scholar
  29. 29.
    Ogawa, S., Lee, T.-M., Nayak, A.S., Glynn, P.: Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78 (1990)CrossRefGoogle Scholar
  30. 30.
    Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990)CrossRefGoogle Scholar
  31. 31.
    Peck, C.C., Kozloski, J., Cecchi, G., Rao, A.R.: A Biologically Motivated Classifier that Preserves Implicit Relationship Information in Layered Networks. In: Ribeiro, et al. (eds.) Adaptive and Natural Computing Algorithms: Proc. of the Int. Conf. in Coimbra, Portugal. Springer, Berlin (2005)Google Scholar
  32. 32.
    Ranjan, R., Druckmann, S., Gidon, A., Goodman, P., Hay, E., Hill, S.L., Ramaswamy, S., Schürmann, F., Markram, H.: The Blue Brain Project: Capturing parameters from genetically-prescribed ion channels for neuron modeling. In: Program 752.15. Neuroscience Meeting Planner, Society for Neuroscience, San Diego (2007) OnlineGoogle Scholar
  33. 33.
    Rao, A.R., Cecchi, G.A., Peck, C.C., Kozloski, J.R.: Unsupervised segmentation with dynamical units. IEEE Transactions on Neural Networks (January 2008)Google Scholar
  34. 34.
    Rosenblatt, F.: Principles of Neurodynamics: Perception and the Theory of Brain Mechanisms. Spartan Books, Washington (1962)zbMATHGoogle Scholar
  35. 35.
    Seth, A.K., McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: Cerebral Cortex May 13 Advanced access (2004)Google Scholar
  36. 36.
    Silberberg, G., Markram, H.: Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53(5), 735–746 (2007)CrossRefGoogle Scholar
  37. 37.
    SPM from the Wellcome Department of Cognitive Neurology, http://www.fil.ion.ucl.ac.uk/SPM
  38. 38.
    Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–239 (2001)CrossRefGoogle Scholar
  39. 39.
    Watts, D.J., Strogatz, S.J.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Charles Peck
    • 1
  • James Kozloski
    • 1
  • Guillermo Cecchi
    • 1
  • Sean Hill
    • 1
  • Felix Schürmann
    • 2
  • Henry Markram
    • 2
  • Ravi Rao
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown Heights
  2. 2.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations