Advertisement

The Role of Simplifying Models in Neuroscience: Modelling Structure and Function

  • Dina M. Kronhaus
  • Stephen J. Eglen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)

Abstract

The adult human brain has around 1011 neurons and 1015 connections between these neurons, thus forming an incredibly complex network. In this article, we first describe two complementary approaches to modelling brain function, namely simplifying and realistic models. We then demonstrate, by way of two examples, the utility of building simplifying neural models. In the first example, we consider the development of neuronal positioning. In the second example, we investigate the stability of a cortical network under control and perturbed conditions.

Keywords

simplifying neural models retinal mosaics cortical compensation anterior cingulate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin, A.L.: The Croonian lecture: Ionic movements and electrical activity in giant nerve fibres. Proc. R. Soc. Lond. B 148, 1–37 (1958)CrossRefGoogle Scholar
  2. Sejnowski, T.J., Koch, C., Churchland, P.S.: Computational neuroscience. Science 241, 1299–1306 (1988)CrossRefGoogle Scholar
  3. Nathan, R., Muller-Landau, H.C.: Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285 (2000)CrossRefGoogle Scholar
  4. Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce English text. Complex Systems 1, 145–168 (1987)zbMATHGoogle Scholar
  5. Cook, J.E., Chalupa, L.M.: Retinal mosaics: new insights into an old concept. Trends Neurosci. 23, 26–34 (2000)CrossRefGoogle Scholar
  6. Wässle, H., Riemann, H.J.: The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B 200, 441–461 (1978)CrossRefGoogle Scholar
  7. Wässle, H., Boycott, B.B., Illing, R.B.: Morphology and mosaic of on-beta and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. Lond. B 212, 177–195 (1981)CrossRefGoogle Scholar
  8. Galli-Resta, L., Resta, G., Tan, S.-S., Reese, B.E.: Mosaics of Islet-1-expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci. 17, 7831–7838 (1997)Google Scholar
  9. Eglen, S.J., van Ooyen, A., Willshaw, D.J.: Lateral cell movement driven by dendritic interactions is sufficient to form retinal mosaics. Network: Comput. Neural Syst. 11, 103–118 (2000)CrossRefzbMATHGoogle Scholar
  10. Eglen, S.J., Willshaw, D.J.: Influence of cell fate mechanisms upon retinal mosaic formation: a modelling study. Development 129, 5399–5408 (2002)CrossRefGoogle Scholar
  11. Eglen, S.J., Diggle, P.J., Troy, J.B.: Homotypic constraints dominate positioning of on- and off-centre beta retinal ganglion cells. Vis. Neurosci. 22, 859–871 (2005)CrossRefGoogle Scholar
  12. Kronhaus, D.M., Willshaw, D.J.: The cingulate as a catalyst region for global dysfunction: a dynamical modelling paradigm. Cereb. Cortex 16, 1212–1224 (2006)CrossRefGoogle Scholar
  13. Haxby, J.V., Ungerleider, L.G., Horwitz, B., Rapoport, S.I., Grady, C.L.: Hemispheric differences in neural systems for face working memory: a PET rCBF study. Hum. Brain Mapp. 3, 68–82 (1995)CrossRefGoogle Scholar
  14. McIntosh, A.R., Grady, C.L., Haxby, J.V., Ungerleider, L.G., Horwitz, B.: Changes in limbic and prefontal functional interactions in a working memory task for faces. Cereb. Cortex 6, 571–584 (1996)CrossRefGoogle Scholar
  15. Shajahan, P.M., Glabus, M.F., Gooding, P.A., Shah, P.J., Ebmeier, K.P.: Reduced cortical excitability in depression. Impaired post-exercise motor facilitation with transcranial magnetic stimulation. Br. J. Psychiatry 174, 449–454 (1999)CrossRefGoogle Scholar
  16. Kronhaus, D.M.: Neuroinformatics approaches to understanding affective disorders. PhD thesis, University of Edinburgh (2004)Google Scholar
  17. Drevets, W.C., Price, J.L., Simpson Jr., J.R., Todd, R.D., Reich, T., Vannier, M., Raichle, M.E.: Subgenual prefontal cortex abnormalities in mood disorders. Nature 386, 824–827 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dina M. Kronhaus
    • 1
  • Stephen J. Eglen
    • 2
  1. 1.Computer LaboratoryCambridge UniversityUK
  2. 2.Cambridge Computational Biology InstituteUK

Personalised recommendations