Human Heuristics for Autonomous Agents

  • Franco Bagnoli
  • Andrea Guazzini
  • Pietro Liò
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)


We investigate the problem of autonomous agents processing pieces of information that may be corrupted (tainted). Agents have the option of contacting a central database for a reliable check of the status of the message, but this procedure is costly and therefore should be used with parsimony. Agents have to evaluate the risk of being infected, and decide if and when communicating partners are affordable. Trustability is implemented as a personal (one-to-one) record of past contacts among agents, and as a mean-field monitoring of the level of message corruption. Moreover, this information is slowly forgotten in time, so that at the end everybody is checked against the database. We explore the behavior of a homogeneous system in the case of a fixed pool of spreaders of corrupted messages, and in the case of spontaneous appearance of corrupted messages.


MultiAgent System Autonomous Agent Infection Level Central Database Ecological Rationality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Healey, E.: Emma Darwin: The Inspirational Wife of a Genius. Headline Publishing Group, London (2001)Google Scholar
  2. 2.
    Litchfield, H.: Emma Darwin, a century of family letters, pp. 1792–1896. D. Appleton And Company, London (1940)Google Scholar
  3. 3.
    Tversky, A., Kahneman, D.: Availability: A heuristic for judging frequency and probability. Cognitive Psychology 5, 207 (1973)CrossRefGoogle Scholar
  4. 4.
    Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases. Science 185, 1124 (1974)CrossRefGoogle Scholar
  5. 5.
    Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica 47, 263 (1979)CrossRefzbMATHGoogle Scholar
  6. 6.
    Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice. Science 211, 453 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kahneman, D., Slovic, P., Tversky, A. (eds.): Judgment under uncertainty: heuristics and biases. Cambridge University Press, New York (1982)Google Scholar
  8. 8.
    McNeil, B.J., Pauker, S.G., Soxand, H.C., Tversky, A.: On the elicitation of preferences for alternative therapies. New England Journal of Medicine 306, 1259 (1982)CrossRefGoogle Scholar
  9. 9.
    Shelley Taylor, E.: The Availability Bias in Social Perception and Interaction. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment Under Uncertainty: Heuristics and Biases. Cambridge University Press, New York (1982)Google Scholar
  10. 10.
    Slovic, P., Fischoff, B., Lichtenstein, S.: Facts versus Fears: Understanding Perceived Risk. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment Under Uncertainty: Heuristics and Biases. Cambridge University Press, New York (1982)Google Scholar
  11. 11.
    Gigerenzer, G., Todd, P.M., ABC Research Group: Simple Heuristics That Make Us Smart. Oxford University Press, Oxford (1999)Google Scholar
  12. 12.
    Christensen, C., Abbott, A.S.: Team Medical Decision Making. In: Chapman, G.B., Sonnenberg, F.A. (eds.) Decision Making in Health Care: Theory, Psychology, and Applications. Cambridge University Press, New York (2000)Google Scholar
  13. 13.
    Sun, R. (ed.): Cognition and multi agent interaction: from cognitive modeling to social simulation. Cambridge University Press, New York (2006)Google Scholar
  14. 14.
    Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT Press, Cambridge (2000)Google Scholar
  15. 15.
    Wooldridge, M.: Introduction to MultiAgent Systems. Wiley, New York (2002)Google Scholar
  16. 16.
    d’Inverno, M., Luck, M.: Understanding Agent Systems. Springer Series on Agent Technology. Springer, Berlin (2003)zbMATHGoogle Scholar
  17. 17.
    Merelli, E., et al.: Agents in bioinformatics, computational and systems biology. Brief Bioinform. 8, 45 (2007)CrossRefGoogle Scholar
  18. 18.
    Dreyfus, H.: What Computers Still Can’t Do. MIT Press, Cambridge (1992)Google Scholar
  19. 19.
    Gazzaniga, M.S.: Cognitive Neuroscience. MIT Press, Cambridge (1995)Google Scholar
  20. 20.
    Rosenzweig, M.R., Breedlove, S.M., Watson, N.V.: Biological Psychology: An Introduction to Behavioral and Cognitive Neuroscience. Sinauer Associates, Sunderland (2004)Google Scholar
  21. 21.
    Pinker, S.: How the Mind Works, Norton, New York (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Franco Bagnoli
    • 1
  • Andrea Guazzini
    • 1
  • Pietro Liò
    • 2
  1. 1.Department of EnergyUniversity of Florence, Also CSDC and INFN, sez. FirenzeFirenzeItaly
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations