Maintaining Spatial-Temporal Knowledge through Human Interaction

  • Halikul Lenando
  • Roger M. Whitaker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)


Using wireless peer-to-peer interactions between portable devices, it is possible to locally share information and maintain spatial-temporal knowledge emanating from the surroundings. We consider the prospects for unleashing ambient data from the surrounding environment for information provision using two biological phenomena: human mobility and human social interaction. This leads to analogies with epidemiology and is highly relevant to future technology-rich environments. Here, embedded devices in the physical environment, such as sensors and wireless-enabled appliances, represent information sources that can provide extensive situated information. In this paper we address a candidate scenario where isolated sensors in the environment provide real-time data from fixed locations. Using simulation, we examine what happens when information is greedily acquired and shared by mobile participants through peer-to-peer interaction. This is assessed taking into account availability of source nodes and the effects of mobility with respect to temporal accuracy of information. The results reaffirm the need to consider a range of mobility models in testing and validating protocols.


Opportunistic networking mobile peer-to-peer networking wireless 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burns, B., Brock, O., Levine, B.N.: Mv routing and capacity building in distruption tolerant networks. In: Proceedings of IEEE INFOCOM (2005)Google Scholar
  2. 2.
    Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless communications and mobile computing 2, 483–502 (2002)CrossRefGoogle Scholar
  3. 3.
    Cao, H., Wolfson, O., Xu, B., Yin, H.: Mobi-dic: Mobile discovery of local resources in peer-to-peer wireless network. IEEE Data Eng. Bull. 28(3), 11–18 (2005)Google Scholar
  4. 4.
    Chlamtac, I., Conti, M., Liu, J.J.N.: Ad-hoc networking: imperatives and challenges. Ad-hoc networks 1(1), 13–64 (2003)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science 2/3, 243–278 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kortuem, G., Schneider, J., Preuitt, D., Thompson, T.G.C., Fickas, S., Segall, Z.: When peer-to-peer comes face-to-face: Collaborative peer-to-peer computing in mobile ad hoc networks. In: Proceedings of the First International Conference on Peer-to-Peer Computing, P2P 2001 (2001)Google Scholar
  7. 7.
    Kurhinen, J., Vuori, J.: Information diffusion in a single-hop mobile peer-to-peer network. In: ISCC 2005: Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005), pp. 137–142 (2005)Google Scholar
  8. 8.
    Leguay, J., Friedman, T., Conan, V.: DTN routing in a mobility pattern space. In: Proc. WDTN (2005)Google Scholar
  9. 9.
    Lindgren, A., Doria, A., Schelen, O.: Probabilistic routing in intermittently connected networks. In: Dini, P., Lorenz, P., Souza, J.N.d. (eds.) SAPIR 2004. LNCS, vol. 3126, pp. 239–254. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Luo, Y., Wolfson, O., Xu, B.: A spatio-temporal approach to selective data dissemination in mobile peer-to-peer networks. In: Proceedings of the 3rd International Conference on Wireless and Mobile Communications (ICWMC 2007), p. 50b (2007)Google Scholar
  11. 11.
    Musolesi, M., Hailes, S., Mascolo, C.: Adaptive Routing for Intermittently Connected Mobile Ad Hoc Networks. In: Proceedings of the IEEE 6th International Symposium on a World of Wireless, Mobile, and Multimedia Networks (WoWMoM 2005), Taormina, Italy (2005)Google Scholar
  12. 12.
    Nittel, S., Duckham, M., Kulik, L.: Information dissemination in mobile ad hoc geosensor networks. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 206–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Papadopouli, M., Schulzrinne, H.: Effects of power conservation, wireless coverage and cooperation on data dissemination among mobile devices. In: Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing (MobiHoc 2001), pp. 117–127 (2001)Google Scholar
  14. 14.
    Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine 44(11), 134–141 (2006)CrossRefGoogle Scholar
  15. 15.
    Pering, T., Raghunathan, V.: Exploiting radio hierarchies for power-efficient wireless device discovery and connection setup. In: Proceedings of the 18th International Conference on VLSI design, pp. 774–779 (2005)Google Scholar
  16. 16.
    Repantis, T., Kalogeraki, V.: Data dissemination in mobile peer-to-peer networks. In: Proceedings of the IEEE 6th International on Mobile data management, pp. 211–219 (2005)Google Scholar
  17. 17.
    Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier architecture for sparse sensor networks. In: Proceedings of the First IEEE 2003 IEEE International Workshop on Sensor Network Protocols and Applications, pp. 30–41 (2003)Google Scholar
  18. 18.
    Spyropoulos, T., Psounis, K.: Spray and focus: Efficient mobility-assisted routing in heterogeneous and correlated mobility. In: Proceedings of IEEE Percom ICMAN Workshop, pp. 79–85 (2007)Google Scholar
  19. 19.
    Spyropoulos, T., Psounis, K., Raghavendra, C.: Spray and wait: An efficient routing scheme or intermittently connected mobile networks. In: Proceedings of ACM SIGCOMM workshop on delay tolerant networking, pp. 252–259 (2005)Google Scholar
  20. 20.
    Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks (2000)Google Scholar
  21. 21.
    Widmer, J., Le Boudec, J.-Y.: Network coding for efficient communication in extreme networks. In: Proceeding of the ACM SIGCOMM workshop on Delay-tolerant networking (2005)Google Scholar
  22. 22.
    Wolfson, O., Xu, B., Prasad Sistla, A.: An economic model for resource exchange in mobile peer to peer networks. In: SSDBM, pp. 235–244 (2004)Google Scholar
  23. 23.
    Wolfson, O., Xu, B., Yin, H., Cao, H.: Search-and-discover in mobile p2p network databases. In: ICDCS, p. 65 (2006)Google Scholar
  24. 24.
    Xu, B., Wolfson, O.: Data management in mobile peer-to-peer networks. In: Ng, W.S., Ooi, B.-C., Ouksel, A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Xu, B., Wolfson, O., Chamberlain, S.: Spatially distributed databases on sensors. In: ACM-GIS, pp. 153–160 (2000)Google Scholar
  26. 26.
    Xu, B., Wolfson, O., Rishe, N.: Benefit and pricing of spatio-temporal information in mobile peer-to-peer networks. In: Proceedings of the 39th Hawaii International Conference on Systems Science, p. 223b (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Halikul Lenando
    • 1
  • Roger M. Whitaker
    • 1
  1. 1.School of Computer ScienceCardiff UniversityCardiff

Personalised recommendations