A Complex Network Approach to the Determination of Functional Groups in the Neural System of C. Elegans

  • Alex Arenas
  • Alberto Fernández
  • Sergio Gómez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)


The structure of real complex networks is often modular, with sets of nodes more connected between them than to the rest of the network. These communities are usually reflecting a topology-functionality interplay, whose discovery is basic for the understanding of the operation of the networks. Thus, much attention has been driven to the determination of the modular structure of complex networks. Recently it has been shown that this modular organization appears at several scales of description, which may be found by a synchronization process on top of these networks. Here we make use of it for a tentative uncovering of functional groups in the neural system of the nematode C. elegans.


Complex Network Neuronal Network Community Detection Laplacian Matrix Synchronization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefGoogle Scholar
  2. 2.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Guimerà, R., Amaral, L.A.N.: Functional cartography of metabolic networks. Nature 433, 895–900 (2005a)CrossRefGoogle Scholar
  5. 5.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  6. 6.
    Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004a)CrossRefGoogle Scholar
  7. 7.
    Bell, E.T.: Exponential Numbers. Amer. Math. Monthly 41, 411–419 (1934)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing Modularity is hard. arXiv:physics/0608255 (2006)Google Scholar
  9. 9.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)CrossRefGoogle Scholar
  10. 10.
    Duch, J., Arenas, A.: Community identification using Extremal Optimization. Phys. Rev. E 72, 027104 (2005)CrossRefGoogle Scholar
  11. 11.
    Guimerà, R., Amaral, L.A.N.: Cartography of complex networks: modules and universal roles. J. Stat. Mech., P02001 (2005b)Google Scholar
  12. 12.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004b)CrossRefGoogle Scholar
  13. 13.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)CrossRefGoogle Scholar
  14. 14.
    Pujol, J.M., Béjar, J., Delgado, J.: Clustering Algorithm for Determining Community Structure in Large Networks. Phys. Rev. E 74, 016107 (2006)CrossRefGoogle Scholar
  15. 15.
    Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Community analysis in social networks. J. Stat. Mech., P09008 (2005)Google Scholar
  16. 16.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)CrossRefGoogle Scholar
  17. 17.
    Arenas, A., Díaz-Guilera, A., Perez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)CrossRefGoogle Scholar
  18. 18.
    Arenas, A., Díaz-Guilera, A., Perez-Vicente, C.J.: Synchronization processes in complex networks Physica D 224, 27–34 (2006)Google Scholar
  19. 19.
    Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007)CrossRefGoogle Scholar
  20. 20.
    Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Synchronizability determined by coupling strengths and topology on Complex Networks. Phys. Rev. E 75, 066106 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Boccaletti, S., Ivanchenko, M., Latora, V., Pluchino, A., Rapisarda, A.: Detecting complex network modularity by dynamical clustering. Phys. Rev. E 75, 045102(R) (2007)CrossRefGoogle Scholar
  22. 22.
    White, J.G., Southgate, E., Thompson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Phil. Trans. Royal Soc. London. Series B 314, 1–340 (1986)CrossRefGoogle Scholar
  23. 23.
    Achacoso, T.B., Yamamoto, W.S.: AY’s Neuroanatomy of C. Elegans for Computation. CRC Press, Boca Raton (1992)Google Scholar
  24. 24.
    Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. Lect. Notes in Physics 30, 420–422 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Durbin, R.M.: Studies on the Development and Organisation of the Nervous System of Caenorhabditis elegans. PhD Thesis, University of Cambridge (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alex Arenas
    • 1
  • Alberto Fernández
    • 1
  • Sergio Gómez
    • 1
  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations