Phase Patterns of Coupled Oscillators with Application to Wireless Communication

  • Albert Díaz-Guilera
  • Alex Arenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)


Here we study the plausibility of a phase oscillators dynamical model for time division for multiple access in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.


time division for multiple access phase oscillators round-robin schedule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Falconer, D., Adachi, F., Gudmundson, B.: Time division multiple access methods for wireless personal communications. IEEE Communications Magazine 33, 50–57 (1995)CrossRefGoogle Scholar
  2. 2.
    Degesys, J., Rose, I., Patel, A., Nagpal, R.: Desync: self-organizing desynchronization and tdma on wireless sensor networks. In: IPSN 2007: Proceedings of the 6th international conference on Information processing in sensor networks, pp. 11–20. ACM, New York (2007)Google Scholar
  3. 3.
    Patel, A., Degesys, J., Nagpal, R.: Desynchronization: The theory of self-organizing algorithms for round-robin scheduling. In: SASO, pp. 87–96. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  4. 4.
    Díaz-Guilera, A., Pérez, C.J., Arenas, A.: Mechanisms of synchronization and pattern formation in a lattice of pulse-coupled oscillators. Phys. Rev. E 57, 3820–3828 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Guardiola, X., Díaz-Guilera, A.: Pattern selection in a lattice of pulse-coupled oscillators. Phys. Rev. E 60, 3626–3632 (1999)CrossRefGoogle Scholar
  6. 6.
    Kuramoto, Y.: Chemical oscillations, waves, and turbulence. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  7. 7.
    Acebrón, J.A., Bonilla, L.L., Pérez-Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)CrossRefGoogle Scholar
  8. 8.
    Díaz-Guilera, A., Pérez, C.J., Arenas, A.: Synchronization in a ring of pulsating oscillators with bidirectional couplings. Int. J. Bif. Chaos 9, 2203–2207 (1999)CrossRefGoogle Scholar
  9. 9.
    Kopell, N., Ermentrout, G.: Symmetry and phase-locking in chains of weakly coupled oscillators. Communications on Pure and Applied Mathematics 39, 623–660 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kopell, N., Ermentrout, G.B.: Phase transitions and other phenomena in chains of coupled oscillators. SIAM Journal of Applied Mathematics 50, 1014–1052 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Izhikevich, E.M.: Weakly pulse-coupled oscillators, fm interactions, synchronization, and oscillatory associative memory. IEEE Trans. Neural Networks 10, 508–526Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Albert Díaz-Guilera
    • 1
  • Alex Arenas
    • 2
  1. 1.Departament de Física FonamentalUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations