Bio-Inspired Computing and Communication pp 165-173 | Cite as
The Topological Fortress of Termites
Abstract
Termites are known for building some of the most elaborate architectures observed in the animal world. We here analyse some topological properties of three dimensional networks of galleries built by termites of the genus Cubitermes. These networks are extremely sparse, in spite of the fact that there is no building cost associated with higher connectivity. In addition, more “central” vertices (in term of betweenness or degree) are preferentially localised at spatial positions far from the external nest walls (more than in a null network model calibrated to exactly the same spatial arrangement of vertices). We argue that both sparseness and the particular spatial location of “central” vertices may be adaptive, because they provide an ecological advantage for nest defence against the attacks from other insects.
Keywords
spatial networks social insects morphogenesys complex systems patternsPreview
Unable to display preview. Download preview PDF.
References
- 1.Anthonisse, J.M.: The rush in a directed graph. Technical report, Stichting Matematisch Centrum, Amsterdam (1971)Google Scholar
- 2.Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex Networks: Structure and Dynamics. Physics Reports-review section of Physics Letters 424(4-5), 175–308 (2006)MathSciNetGoogle Scholar
- 3.Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)CrossRefMATHGoogle Scholar
- 4.Dejean, A., Fénéron, R.: Predatory Behaviour in the Ponerine Ant, Centromyrmex bequaerti: a Case of Termitolesty. Behavioural Processes 47, 125–133 (1999)CrossRefGoogle Scholar
- 5.Dejean, A., Durand, J.L., Bolton, B.: Ants Inhabiting Cubitermes Termitaries in African Rain Forests. Biotropica 28(4), 701–713 (1996)CrossRefGoogle Scholar
- 6.Desneux, J.: Les Constructions Hypogées des Apicotermes Termites de l’Afrique Tropicale. Annales du Musée Royal du Congo Belge Tervuren 17, 7–98 (1952)Google Scholar
- 7.Erdös, P., Rényi, A.: On Random Graphs. Publicationes Mathematicae 6, 290–297 (1959)MathSciNetMATHGoogle Scholar
- 8.Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
- 9.Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized Shortcuts in the Argentine Ant. Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar
- 10.Grassé, P.P.: Termitologia, Tome 2: Fondation des Sociétés, Construction. Masson, Paris (1984)Google Scholar
- 11.Grassé, P.P.: Termitologia, Tome 3: Comportement - Socialité - Écologie - Evolution - Systematique Masson, Paris (1986)Google Scholar
- 12.Hansell, M.: Animal Architecture. Oxford University Press, USA (2005)CrossRefGoogle Scholar
- 13.Hölldobler, B., Wilson, E.O.: The ants. Belknap Press of Harvard University Press, Cambridge (1990)CrossRefGoogle Scholar
- 14.Korb, J., Linsenmair, K.E.: Ventilation of termite mounds: new results require a new model. Behavioral Ecology 11, 486–494 (2000)CrossRefGoogle Scholar
- 15.Lüscher, M.: Der Sauerstoffverbrauch bei Termiten und die Ventilation des Nestes bei Macrotermes natalensis (Haviland). Acta Trop. 12, 289–307 (1955)Google Scholar
- 16.Peleg, D., Schäffer, A.: Graph Spanners. Journal of Graph Theory 13, 99–116 (1989)MathSciNetCrossRefMATHGoogle Scholar
- 17.Propp, J., Wilson, D.: How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph. Journal of Algorithms 27, 170–210 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 18.Theraulaz, G., Bonabeau, E.: Coordination in Distributed Building. Science 269(5224), 686–688 (1995)CrossRefGoogle Scholar
- 19.Theraulaz, G., Bonabeau, E., Deneubourg, J.L.: The Origin of Nest Complexity in Social Insects. Complexity 3(6), 15–25 (1998)CrossRefMATHGoogle Scholar
- 20.Turner, J.S.: The Extended Organism: the Physiology of Animal-built Structures. Harvard University Press, Cambridge (2000)Google Scholar