Advertisement

Weighted and Directed Network on Traveling Patterns

  • J. I. L. Miguéns
  • J. F. F. Mendes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)

Abstract

The importance of weighted and directed networks is brought into discussion. On this study we analyze the arrivals of international tourism (edges) over 206 countries and territories (nodes) around the world, on the year 2004. Using tools from network theory we characterize the topology and weighted properties of the resulting network. International tourist arrivals are analyzed over in strength and out strength flows, resulting on a highly directed and heterogenetic network. Remarkably the random network of connectivity is converted into a power-law network of intensities. It is also shown how strategic positioning particularly benefit from market diversity and that interactions among countries prevail on a technological and economic pattern, questioning the backbones of traveling driving forces. The network structure may influence how tourism hubs, distribution of flows, and centralization can be explored on strategic positioning.

Keywords

social networks complex networks traveling patterns directed and weighted networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Travers, J., Milgram, S.: An Experimental Study of the Small World Problem. Sociometry 32, 425–443 (1969)CrossRefGoogle Scholar
  2. 2.
    Granovetter, M.S.: The Strength of Weak Ties. The American Journal of Sociology 78, 1360–1380 (1973)CrossRefGoogle Scholar
  3. 3.
    Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079–1187 (2002)CrossRefGoogle Scholar
  5. 5.
    Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jeong, H., Mason, S.P., Barabasi, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)CrossRefGoogle Scholar
  7. 7.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks: From biological nets to the internet and WWW. Oxford Univ. Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Strogatz, S.H.: Exploring complex networks. Nature 410, 268 (2001)CrossRefGoogle Scholar
  9. 9.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air transportation network: Anomalous centrality, community structure, and cities global roles. Proc. Natl. Acad. Sci. USA 102, 7794–7799 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garlaschelli, G., Battiston, S.: The scale-free topology of market investments. Physica A 350, 491 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Caldarelli, G., Battiston, S., Garlaschelli, D., Catanzaro, M.: Emergence of Complexity in Financial Networks. Lecture Notes in Physics 650, 399 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tibely, G., Onnela, J.-P., Saramaki, J., Kaski, K., Kertesz, J.: Spectrum, Intensity and Coherence in Weighted Networks of a Financial Market. Physica A 370, 145–150 (2006)CrossRefGoogle Scholar
  14. 14.
    Albert, R., Jeong, H., Barabasi, A.-L.: Internet: Diameter of the World-Wide Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  15. 15.
    Barabasi, A.L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311, 590–614 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001b)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)CrossRefGoogle Scholar
  18. 18.
    de Montis, A., Barthelemy, M., Chessa, A., Vespignani, A.: The structure of Inter-Urban traffic: A weighted network analysis. Environment and Planning B: Planning and Design 34(5), 905–924 (2007)CrossRefGoogle Scholar
  19. 19.
    Barrat, A., Barthelemy, M., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101, 3747–3752 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gibson, L., Hall, M., Lynch, P., Mitchell, R., Morrison, A., Schreiber, C.: Micro-Clusters and Networks: The Growth of Tourism (Advances in Tourism Research Series) (2006)Google Scholar
  21. 21.
    Shih, H.-Y.: Network characteristics of drive tourism destinations: an application of network analysis in tourism. Tourism Management 27, 1029–1039 (2006)CrossRefGoogle Scholar
  22. 22.
    WTO Pbcn: New Yearbook of Tourism Statistics (World Tourism Organization Pbcn) (2006)Google Scholar
  23. 23.
    Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard University Press (1995)Google Scholar
  24. 24.
    Freeman, L.C.: Centrality in Social Networks Conceptual Clarification. Social Networks 1, 215–239 (1979)CrossRefGoogle Scholar
  25. 25.
    Goltsev, A.V., Dorogovtsev, S.N., Mendes, J.F.F.: Critical phenomena in networks. Phys. Rev. E 67, 026123, 1–5 (2003)CrossRefGoogle Scholar
  26. 26.
    Park, S.M., Kim, B.J.: Dynamic behaviors in directed networks. Phys. Rev. E 74, 026114 (2006)CrossRefGoogle Scholar
  27. 27.
    Barrat, A., Barthelemy, M., Vespignani, A.: Weighted Evolving Networks: Coupling Topology and Weight Dynamics. Phys. Rev. Lett. 92, 228701 (2004)CrossRefGoogle Scholar
  28. 28.
    Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Krapivsky, P.L., Rodgers, G.J., Redner, S.: Degree Distributions of Growing Networks. Phys. Rev. Lett. 86, 5401–5404 (2001)CrossRefGoogle Scholar
  30. 30.
    Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C.: Scaling laws for the movement of people between locations in a large city. Phys. Rev. E 68, 066102 (2003)CrossRefGoogle Scholar
  31. 31.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. I. L. Miguéns
    • 1
  • J. F. F. Mendes
    • 2
  1. 1.Economics, Management and Industrial Engineering DepartmentAveiro UniversityAveiroPortugal
  2. 2.Physics DepartmentAveiro UniversityAveiroPortugal

Personalised recommendations