Skip to main content

Computing Best Swaps in Optimal Tree Spanners

  • Conference paper
Algorithms and Computation (ISAAC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Included in the following conference series:

Abstract

In a densely connected communication network, represented by a graph G with nonnegative edge-weights, it is often advantageous to route all communication on a sparse, spanning subnetwork, typically a spanning tree of G. With the communication overhead in mind, we consider a spanning tree T of G which guarantees that for any two nodes, their distance in T is at most k times their distance in G, where k, called the stretch, is as small as possible. Such a spanning tree which minimizes the stretch is called an optimal tree spanner, and it can be used for efficient routing. However, for a communication tree, the failure of an edge is catastrophic; it disconnects the tree. Functionality can be restored by connecting both parts of the tree with another edge, while leaving the two parts themselves untouched. In situations where the failure can be repaired rapidly, such a quick fix is preferred over the recomputation of an entirely new optimal tree spanner, because it is much closer to the previous solution and hence requires far fewer adjustments in the routing scheme. We are therefore interested in the problem of finding for any possibly failing edge in the spanner T a best swap edge to replace it. The objective here is naturally to minimize the stretch of the new tree. We show how all these best swap edges can be computed in total time O(m 2 logn) in graphs with arbitrary nonnegative edge weights. For graphs with unit weight edges (also called unweighted graphs), we present an O(n 3) time algorithm. Furthermore, we present a distributed algorithm for computing the best swap for each edge in the spanner.

Work partially supported by NCCR-MICS, a center supported by the Swiss NSF under grant number 5005 – 67322, and by the Swiss SBF under contract no. C05.0047 within COST-295 (DYNAMO) of the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a survey and a new algorithm for a distributed environment. Theory Comput. Syst. 37(3), 441–456 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, L., Corneil, D.: Tree Spanners. SIAM J. Discr. Math. 8(3), 359–387 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Das, S., Gfeller, B., Widmayer, P.: Computing Best Swaps in Optimal Tree Spanners. Technical Report 607, ETH Zurich (September 2008), http://www.inf.ethz.ch/research/disstechreps/techreports

  4. Dixon, B., Rauch, M., Tarjan, R.: Verification and Sensitivity Analysis of Minimum Spanning Trees in Linear Time. SIAM J. Comp. 21(6), 1184–1192 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Emek, Y., Peleg, D.: Approximating Minimum Max-Stretch spanning Trees on unweighted graphs. In: SODA 2004: Proceedings of the fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics, pp. 261–270 (2004)

    Google Scholar 

  6. Flocchini, P., Enriques, A., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure Shortest-path Rerouting: Computing the Optimal Swap Edges Distributively. IEICE Transactions on Information and Systems E89-D(2), 700–708 (2006)

    Article  Google Scholar 

  7. Flocchini, P., Enriquez, T., Pagli, L., Prencipe, G., Santoro, N.: Distributed Computation of All Node Replacements of a Minimum Spanning Tree. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 598–607. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing All the Best Swap Edges Distributively. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 154–168. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Gfeller, B.: Faster Swap Edge Computation in Minimum Diameter Spanning Trees. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 454–465. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gfeller, B., Santoro, N., Widmayer, P.: A Distributed Algorithm for Finding All Best Swap Edges of a Minimum Diameter Spanning Tree. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 268–282. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Harel, D., Tarjan, R.: Fast Algorithms for Finding Nearest Common Ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nardelli, E., Proietti, G., Widmayer, P.: How to Swap a Failing Edge of a Single Source Shortest Paths Tree. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 144–153. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000)

    Google Scholar 

  14. Peleg, D., Ullman, J.: An optimal synchronizer for the hypercube. In: PODC 1987: Proceedings of the sixth annual ACM Symposium on Principles of Distributed Computing, pp. 77–85. ACM, New York (1987)

    Chapter  Google Scholar 

  15. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das, S., Gfeller, B., Widmayer, P. (2008). Computing Best Swaps in Optimal Tree Spanners. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics