Skip to main content

Deterministic Sparse Column Based Matrix Reconstruction via Greedy Approximation of SVD

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5369))

Abstract

Given a matrix A ∈ ℝm ×n of rank r, and an integer k < r, the top k singular vectors provide the best rank-k approximation to A. When the columns of A have specific meaning, it is desirable to find (provably) “good” approximations to A k which use only a small number of columns in A. Proposed solutions to this problem have thus far focused on randomized algorithms. Our main result is a simple greedy deterministic algorithm with guarantees on the performance and the number of columns chosen. Specifically, our greedy algorithm chooses c columns from A with \(c=O \left({{k^2\log k} \over {\epsilon^2}} \mu^2(A)\ln\left({\sqrt{k}\|{A_k}\|_F} \over {\epsilon}\|{A-A_k}\|_F\right)\right)\) such that

$${\|A-C_{gr}C_{gr}^+A\|}_F \leq \left(1+\epsilon \right)\|{A-A_k}_F,$$

where C gr is the matrix composed of the c columns, \(C_{gr}^+\) is the pseudo-inverse of C gr (\(C_{gr}C_{gr}^+A\) is the best reconstruction of A from C gr ), and μ(A) is a measure of the coherence in the normalized columns of A. The running time of the algorithm is O(SVD(A k ) + mnc) where SVD(A k ) is the running time complexity of computing the first k singular vectors of A. To the best of our knowledge, this is the first deterministic algorithm with performance guarantees on the number of columns and a (1 + ε) approximation ratio in Frobenius norm. The algorithm is quite simple and intuitive and is obtained by combining a generalization of the well known sparse approximation problem from information theory with an existence result on the possibility of sparse approximation. Tightening the analysis along either of these two dimensions would yield improved results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, T.F.: Rank revealing QR factorizations. Linear Algebra Appl. (88/89), 67–82 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorizations. SIAM J. Matrix Anal. Appl. 15, 592–622 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Review 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Hoog, F.R., Mattheijb, R.M.M.: Subset selection for matrices. Linear Algebra and its Applications (422), 349–359 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. In: SODA 2006, pp. 1117–1126. ACM Press, New York (2006)

    Google Scholar 

  6. Deshpande, A., Varadarajan, K.: Sampling-based dimension reduction for subspace approximation. In: STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 641–650. ACM, New York (2007)

    Chapter  Google Scholar 

  7. Deshpande, A., Vempala, S.: Adaptive sampling and fast low-rank matrix approximation. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 292–303. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs and matrices. In: SODA 1999: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pp. 291–299. SIAM, Philadelphia (1999)

    Google Scholar 

  9. Drineas, P., Kannan, R., Mahoney, M.W.: Fast monte carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM Journal on Computing 36(1), 158–183 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Subspace sampling and relative-error matrix approximation: column-row-based methods. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 304–314. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Friedman, J.H., Stuetzle, W.: Projection pursuit regressions. J. Amer. Statist. Soc. 76, 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  12. Frieze, A., Kannan, R., Vempala, S.: Fast monte-carlo algorithms for finding low-rank approximations. Journal of the Association for Computing Machinery 51(6), 1025–1041 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golub, G.H., Loan, C.V.: Matrix Computations. Johns Hopkins U. Press (1996)

    Google Scholar 

  14. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM Journal on Scientific Computing 17(4), 848–869 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, Y.P., Pan, C.T.: Rank-revealing QR factorizations and the singular value decomposition. Mathematics of Computation 58, 213–232 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Kuruvilla, F.G., Park, P.J., Schreiber, S.L.: Vector algebra in the analysis of genome-wide expression data. Genome Biology (3) (2002)

    Google Scholar 

  17. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  18. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan, C.T., Tang, P.T.P.: Bounds on singular values revealed by QR factorizations. BIT Numerical Mathematics 39, 740–756 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rudelson, M., Vershynin, R.: Sampling from large matrices: An approach through geometric functional analysis. J. ACM 54(4) (2007)

    Google Scholar 

  21. Sarlos, T.: Improved approximation algorithms for large matrices via random projections. In: FOCS 2006: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 143–152. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  22. Shyamalkumar, N.D., Varadarajan, K.: Efficient subspace approximation algorithms. In: SODA 2007: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 532–540. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  23. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Çivril, A., Magdon-Ismail, M. (2008). Deterministic Sparse Column Based Matrix Reconstruction via Greedy Approximation of SVD. In: Hong, SH., Nagamochi, H., Fukunaga, T. (eds) Algorithms and Computation. ISAAC 2008. Lecture Notes in Computer Science, vol 5369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92182-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92182-0_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92181-3

  • Online ISBN: 978-3-540-92182-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics