Skip to main content

The Changing Climate: Past, Present, Future

  • Conference paper
  • First Online:
Relict Species

Abstract

Over the 4.6 billion years of its existence, the Earth has seen a large variety of climate states. During the evolution of our planet, its climate was characterized by periods of enhanced climate variability or even swings and some more or less stable - almost quiet - periods. Natural climate variability was the rule rather than an exception and the evolution of life on Earth was closely linked to climate and its change.

For about 250 years, mankind has interfered stronger with the climate system via the release of radiative gases and particles in substantial amounts into the atmosphere. A global mean near surface temperature increase - global warming - can be deduced from instrumental observations, which started in about 1860. The pace and amount of this temperature increase is unprecedented at least the past 1600 years, as reconstructions from proxy data indicate. The observed warming can be attributed to a large extent to human activities as the most recent report of Intergovernmental Panel on Climate Change states. The atmospheric temperature increase is accompanied by an increase in sea surface temperature and a rise of the sea level. Evidence is building that human-induced climate change has also a direct influence on changes in precipitation and the hydrological cycle.

Climate projection driven by socio-economic scenarios indicate that the global temperature and sea level rise will continue throughout the twenty-first century and beyond, the amount of which is strongly dependent on the underlying emission assumptions.

There are a few climate elements that may be sensitive to sudden, abrupt changes, when a set of conditioning parameters is overstepped or certain thresholds are passed; a prominent example is a possible collapse of the thermohaline circulation in the North Atlantic. Here, further research in necessary to quantify thres­holds, effects and time horizons.

Overall it can be said that a certain amount of future climate change is unavoidable regardless which route of emission reductions mankind will follow and that emissions from the twenty-first century will noticeably affect climate over the entire millennium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen PA (2006) Snowball Earth on trial. Eos Trans Am Geophys Union 87(45):495

    Article  Google Scholar 

  • Allen MR, Gillett NP, Kettleborough JA, Hegerl G, Schnur R, Stott PA, Boer G, Covery G, Delworth TL, Jones GS, Mitchell JFB, Barnett TP (2006) Quantifying anthropogenic influence on recent near-surface temperature change. Surv Geophys 27(5):491–454

    Article  Google Scholar 

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Article  CAS  PubMed  Google Scholar 

  • Archer D, Brovkin V (2008) Millennial atmospheric lifetime of anthropogenic CO2. Clim Change 90:283–297

    Article  CAS  Google Scholar 

  • The BACC author team (2008) Assessment of climate change in the Baltic Sea basin. Springer, Berlin

    Google Scholar 

  • Bard E, Frank M (2006) Climate change and solar variability: what’s new under the Sun? Earth Planet Sci Lett 248:1–14

    Article  CAS  Google Scholar 

  • Barth M, McFadden J, Sun J, Wiedinmyer C, Chuang P, Collins D, Griffin R, Hannigan M, Karl T, Kim S, Lasher-Trapp S, Levis S, Litvak M, Mahowald N, Moore K, Nandi S, Nemitz E, Nenes A, Potosnak M, Raymond TM, Smith J, Stroud C, Still C (2005) The coupling between land ecosystems and the atmospheric hydrological cycle. Bull Am Meteorol Soc 86(12):1738–1742

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, pp. 210

    Google Scholar 

  • Battarbee RW, Binney HA (eds) (2008) Natural climate variablility and global warming: A Holocene perspective. Wiley-Blackwell, p 288

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, JylhĂĽ K, Koffi B, Palutikoff J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate; an exploration of Regional Climate Model projections. Clim Change 81:71–95

    Article  Google Scholar 

  • Berger A (1988) Milankovitch theory and climate. Rev Geophys 26:624–657

    Article  Google Scholar 

  • Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York, p 158

    Google Scholar 

  • Berry SL, Farquhar GD, Roderick ML (2005) Co-evolution of climate, vegetation, soil and air. In: Blöschl G, Sivapalan M (eds) Encyclopedia of hydrological sciences, vol 1, Theory, organisation and scale. Wiley, Chichester, pp 177–192

    Google Scholar 

  • Bhend J, von Storch H (2008) Consistency of observed winter precipitation trends in Northern Europe with regional climate change projections. Clim Dyn 31:17–28

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne J-L, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden DJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  • Botkin D, Saxe H, AraĂşjo MB, Betts R, Bradshaw R, Cedhagen T, Chesson P, Davis MB, Dawson T, Etterson J, Faith DP, Guisan A, Ferrier S, Hansen AS, Hilbert D, Kareiva P, Margules C, New M, Skov F, Sobel MJ, Stockwell D (2007) Forecasting effects of global warming on biodiversity. Bioscience 57:227–236

    Article  Google Scholar 

  • Brasseur GP, Orlando JJ, Tyndall GS (eds) (1999) Atmospheric chemistry and global change. Oxford University Press, New York, p 654

    Google Scholar 

  • Broecker WS (1985) How to built a habitable planet?. Eldigio Press, New York

    Google Scholar 

  • Broecker WC, Stocker TF (2006) The Holocene CO2 rise: anthropogenic or natural? Eos 87(3):27–29

    Article  Google Scholar 

  • Broecker WS, Kunzig R (2008) Fixing climate: what past climate changes reveal about the current threat - and how to counter it. Simon & Schuster, New York, p 272

    Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Canadell JG, Le QuĂ©rĂ© C, Raupach M, Field C, Buitehuis E, Ciais P, Conway T, Gillett N, Houghton R, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870

    Article  CAS  PubMed  Google Scholar 

  • Carslaw KS, Harrison RG, Kirkby J (2002) Cosmic rays, clouds and climate. Science 298:1732–1737

    Article  CAS  PubMed  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33(1):L01602

    Article  Google Scholar 

  • Claussen M (2003) Simulation of Holocene climate change using climate-system models. In: Mackay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the Holocene. Arnold, London, pp 422–434

    Google Scholar 

  • Claussen M, Brovkin V, Calov R, Ganopolski A, Kubatzki C (2005) Did humankind prevent an early glaciation? Comment on Ruddiman’s hypothesis of a pre-historic anthropocene. Clim Change 69:409–417

    Article  CAS  Google Scholar 

  • Cloud P (1978) Cosmos, Earth, and man: a short history of the universe. Yale University Press, New Haven, CT, p 372

    Google Scholar 

  • Crowley TJ (2000a) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  CAS  PubMed  Google Scholar 

  • Crowley TJ (2000b) Carbon dioxide and Phanerozoic climate. In: Huber BT, MacLeod KG, Wing SL (eds) Warm climates in Earth history. Cambridge University Press, Cambridge, pp 425–444

    Google Scholar 

  • Crutzen PJ, Stoermer EF (2000) The “Anthropocene”. Global Change Newslett 41:12–13

    Google Scholar 

  • Dai A (2006) Recent climatology, variability and trends in global surface humidity. J Clim 19:3589–3606

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111:D03103. doi:10.1029/2005JD006352

    Article  Google Scholar 

  • Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706. doi:10.1029/2007GL030000

    Article  Google Scholar 

  • Donner LJ, Large WG (2008) Climate modeling. Annu Rev Environ Resour 33:2.1-2.17

    Article  Google Scholar 

  • Doney SC, Schimel DS (2007) Carbon and climate system coupling on timescales from. The Precambrian to the Anthropocene. Annu Rev Environ Resourc 32:31–66

    Article  Google Scholar 

  • Easterling DR, Evans JL, PYa G, Karl TR, Kunkel KE, Ambenje P (2000a) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81(3):417–425

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000b) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  CAS  PubMed  Google Scholar 

  • Fischlin A, Midgley GF, Price JT, Leemans R, Gopal B, Turley C, Rounsevell MDA, Dube OP, Tarazona J, Velichko AA (2007) Ecosystems, their properties, goods, and services. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 211–272

    Google Scholar 

  • Fischer H, Kumke T, Lohmann G, Flöser G, Miller H, von Storch H, Negendank JFW (eds) (2004) The climate in historical times. Towards a synthesis of Holocene proxy data and climate models. Springer, Berlin, p 487

    Google Scholar 

  • Fleming JR (2007) The climate engineers. Wilson Q 31:46–60

    Google Scholar 

  • Foukal P, Fröhlich C, Spruit H, Wigley TML (2006) Physical mechanisms of solar luminosity variation, and its effect on climate. Nature 443:161–166

    Article  CAS  PubMed  Google Scholar 

  • Ghil M (2002a) Climate variability: nonlinear aspects. In: Holton JR, Pyle J, Curry JA (eds) Encyclopedia of atmospheric sciences. Academic, San Diego, CA, pp 432–438

    Google Scholar 

  • Ghil M (2002b) Natural climate variability. In: Munn T (ed) Encyclopedia of global environmental change, vol 1. Wiley, Chichester, pp 544–49

    Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071-2100). Clim Dyn 23:839–858

    Article  Google Scholar 

  • Graham LP, Hagemann S, Jaun S, Beniston M (2007) On interpreting hydrological change from regional climate models. Clim Change 81:97–122

    Article  Google Scholar 

  • Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34

    Article  CAS  Google Scholar 

  • Graedel TE, Crutzen PJ (1993) Atmospheric change: an earth system perspective. WH Freeman and Company, New York, p 446

    Google Scholar 

  • Haigh JD (2007) The Sun and the Earth’s climate”, Living Rev Solar Phys. 4 http://www.livingreviews.org/lrsp-2007-2, assesed 16.07.2008

  • Hansen J, Mki S, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M (2007a) Climate change and trace gases. Phil Trans R Soc A 365:1925–1954

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Mki S, Ruedy R, Kharecha P, Lacis A, Miller RL, Nazarenko L, Lo K, Schmidt GA, Russell G, Aleinov I, Bauer S, Baum E, Cairns B, Canuto V, Chandler M, Cheng Y, Cohen A, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Jonas J, Kelley M, Kiang NY, Koch D, Labow G, Lerner J, Menon S, Novakov T, Oinas V, Ja P, Perlwitz Ju, Rind D, Romanou A, Schmunk R, Shindell D, Stone P, Sun S, Streets D, Tausnev N, Thresher D, Unger N, Yao M, Zhang S (2007b) Dangerous human-made interference with climate: a GISS modelE study. Atmos Chem Phys 7:2287–2312

    Article  CAS  Google Scholar 

  • Hansen J (2007) Climate catastrophe. New Sci 195:30–34

    Article  Google Scholar 

  • Hartmann DL (1994) Global physical climatology. Academic, San Diego, CA, p 411

    Google Scholar 

  • Hasselmann K (1976) Stochastic climate models, Part I: Theory. Tellus 28:473–485

    Article  Google Scholar 

  • Hasselmann K, Latif M, Hooss G, Azar C, Edenhofer O, Jaeger CC, Johannessen OM, Kemfert C, Welp M, Wokaun A (2003) The challenge of long-term climate change. Science 302:1923–1925

    Article  CAS  PubMed  Google Scholar 

  • Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C, Possingham HP, Thomas CD (2008) Assisted colonization and rapid climate change. Science 321:345–346

    Article  CAS  PubMed  Google Scholar 

  • Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Katzenberger JW, Kheshgi HS, Lackner KS, Lewis JS, Manheimer W, Mankins JC, Marland G, Mauel ME, Perkins LJ, Schlesinger ME, Volk T, Wigley TML (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 295:981–987

    Article  CAS  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  CAS  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, NJ 598

    Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  PubMed  Google Scholar 

  • Hulme M (2003) Abrupt climate change: can society cope? Phil Trans R Soc Lond A 361:2001–2019

    Article  Google Scholar 

  • Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  • Imbrie J, Imbrie KP (1979) Ice ages: solving the mystery. Harvard University Press, Cambridge, MA, p 224

    Google Scholar 

  • IPCC (2000) Special report on emission scenarios. In: Nakicenovic N, Swart R (eds) Cambridge University Press, Cambridge, p 570

    Google Scholar 

  • IPCC (2007a) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • IPCC (2007b) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 42:RG2002. doi:doi: 10.1029/2003RG000143

    Article  Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800, 000 years. Science 317(5839):793–796

    Article  CAS  PubMed  Google Scholar 

  • Kasting JF (2005) Methane and climate during the Precambrian era. Precambrian Res 137:119–129

    Article  CAS  Google Scholar 

  • Kasting JF, Toon OB, Pollack JB (1988) How climate evolved on the terrestrial planets. Sci Am 258(2):90–97

    Article  CAS  Google Scholar 

  • Kasting JF, Catling DC (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463

    Article  CAS  Google Scholar 

  • Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Phil Trans R Soc B 361:917–929

    Article  CAS  PubMed  Google Scholar 

  • Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA, Guenther PR, Waterman LS (1976) Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28:538–551

    Article  CAS  Google Scholar 

  • Kerr JT, Kharouba H, Currie DJ (2007) The macroecological contribution to global change solutions. Science 316:1581–1584

    Article  CAS  PubMed  Google Scholar 

  • Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78:197–208

    Article  Google Scholar 

  • Kiehl JT, Ramanathan V (eds) (2006) Frontiers of climate modeling. Cambridge University Press, Cambridge, p 367

    Google Scholar 

  • Keith DW (2000) Geoengineering the climate: history and prospect. Annu Rev Energy Environ 25:245–284

    Article  Google Scholar 

  • Kirkby J (2008) Cosmic rays and climate. Surv Geophys 28:333–375

    Article  Google Scholar 

  • Kristjánsson JE, Kristiansen J, Kaas E (2004) Solar activity, cosmic rays, clouds and climate - An update. Adv Space Sci 34:407–415

    Article  Google Scholar 

  • Kroepelin S, Verschuren D, Lezine AM, Eggermont H, Cocquyt C, Francus P, Cazet JP, Fagot M, Rumes B, Russell JM, Conley D, Schuster M, von Suchodoletz H, Engstrom DR (2008) Climate-driven ecosystem succession in the central Sahara: the last 6000 years. Science 320:765–768

    Article  CAS  Google Scholar 

  • Lamb HH (1970) Volcanic dust in the atmosphere, with a chronology and assessment of its meteorological significance. Philos Trans R Soc London, Ser A 266:425–533

    Article  Google Scholar 

  • Lamb HH (1995) Climate, history and the modern world, 2nd edn. Routledge, New York, p 464

    Google Scholar 

  • Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. doi:10.1029/2008GL034864

    Article  Google Scholar 

  • Lee TM, Jetz W (2008) Future battlegrounds for conservation under global change. Proc R Soc B 275:1261–1270

    Article  PubMed  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth system. Proc Natl Acad Sci 105:1786–1793

    Article  CAS  PubMed  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola JM, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the last 800, 000 years. Nature 453:383–386

    Article  CAS  PubMed  Google Scholar 

  • LĂĽthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379–382

    Article  PubMed  CAS  Google Scholar 

  • Mann ME (2007) Climate over the past two millennia. Annu Rev Earth Planet Sci Lett 35:111–136

    Article  CAS  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  CAS  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperature over the past two millennia. Geophys Res Lett 30(15):1820. doi:doi: 10.1029/2003GL017814

    Article  Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  CAS  PubMed  Google Scholar 

  • Marsh N, Svensmark H (2000) Cosmic rays clouds and climate. Space Sci Rev 94:215–230

    Article  CAS  Google Scholar 

  • McIntyre S, McKitrick R (2005) Hockey sticks, principal components and spurious significance. Geophys Res Lett 32:L03710

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate models. Geophys Res Lett 32:L18719

    Article  Google Scholar 

  • Midgley GF, Thuiller W, Higgins SI (2007) Plant species migration as a key uncertainty in predicting future impacts of climate change on ecosystems: progress and challenges. In: Canadell J, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing World. Springer, Berlin, pp 129–137

    Chapter  Google Scholar 

  • NRC (2002) Abrupt climate change: inevitable surprises, US National Academy of Sciences, National Research Council Committee on Abrupt Climate Change, National Academy Press

    Google Scholar 

  • NRC (2006) Surface temperature reconstructions for the last 2,000 Years. National Research Council, Committee on Surface Temperature Reconstructions for the Last 2,000 Years. National Academies Press, Washington, DC

    Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14261–14290

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Pacala SW, Socolow RH (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  CAS  PubMed  Google Scholar 

  • Paillard D (2006) What drives the ice age cycle? Science 313:455–456

    Article  CAS  PubMed  Google Scholar 

  • Pagani M, Caldeira K, Archer D, Zachos JC (2006) An ancient carbon mystery. Science 314:1556–1557

    Article  CAS  PubMed  Google Scholar 

  • Pagano T, Sorooshian S (2006) Global water cycle (fundamentals, theory, mechanisms). In: Anderson MG (ed) Encyclopedia of hydrological sciences, vol 5. Wiley, Chichester, pp 2697–2711

    Google Scholar 

  • Parkinson CL (2006) Earth’s Cryosphere: current state and recent changes. Annu Rev Environ Resour 31:33–60

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res 105:11981–11990

    Article  CAS  PubMed  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  CAS  PubMed  Google Scholar 

  • Peixoto JP, Oort AH (1992) The physics of climate. American Institute of Physics, New York, p 522

    Google Scholar 

  • Pielke R Jr, Wigley T, Green C (2008) Dangerous assumptions. Nature 452:531–532

    Article  CAS  PubMed  Google Scholar 

  • Pierrehumbert RT (2002) The hydrologic cycle in deep time climate problems. Nature 419:191–198

    Article  CAS  PubMed  Google Scholar 

  • Pierrehumbert RT (2005) Climate dynamics of a hard snowball Earth. J Geophys Res 110:D01111. doi:10.1029/2004JD005162

    Article  CAS  Google Scholar 

  • Pierrehumbert RT (2009) Principles of planetary climates. Cambridge University Press, Cambridge (in press)

    Google Scholar 

  • Plattner GK, Knutti R, Joos F, Stocker TF, von Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewiz S, Eby M, Edwards NR, Fichefet T, Hargreaves JC, Jones CD, Loutre MF, Matthews HD, Mouchet A, MĂĽller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate - carbon cycle models. J Clim 21:2721–2751

    Article  Google Scholar 

  • Quante M (2004) The role of clouds in the climate system. J Phys 121:61–86

    Google Scholar 

  • Quante M, Matthias V (2006) Water in the Earth´s atmosphere. J Phys 139:37–61

    CAS  Google Scholar 

  • Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214

    Article  CAS  PubMed  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315:368–370

    Article  CAS  PubMed  Google Scholar 

  • Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, BĂĽntgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schär C, Wanner H (2006) Climate variability-observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500-2100 AD. Clim Change 79(1-2):9–29

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willen U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late cenozoic climate. Nature 359(6391):117–122

    Article  CAS  Google Scholar 

  • Rial JA, Pielke RA Sr, Beniston M, Claussen M, Canadell J, Cox P, Held H, de Noblet-DucoudrĂ© N, Prinn R, Reynolds J, Salas JD (2004) Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Clim Change 65(1–2):11–38

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  CAS  Google Scholar 

  • Robock A (2008) 20 reasons why geoengineering may be a bad idea. Bull At Sci 64(2):14–18. doi:doi: 10.2968/064002006 59

    Google Scholar 

  • Rohling EJ, Grant K, Hemleben Ch, Siddall M, Hoogakker BAA, Bolshaw M, Kucera M (2008) High rates of sea-level rise during the last interglacial period. Nat Geosci 1:38–42

    Article  CAS  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  CAS  PubMed  Google Scholar 

  • Royer DL, Bemer RA, Beerling DJ (2001) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth-Sci Rev 54:349–392

    Article  CAS  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic green-house era began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Ruddiman WF (2005) Plows, plagues and petroleum: how humans took control of climate. Princeton University Press, Princeton, p 272

    Google Scholar 

  • Ruddiman WF (2008) Earth’s climate: past and future, 2nd edn. W.H. Freeman & Company, New York, p 465

    Google Scholar 

  • Rybski D, Bunde A, Havlin S, von Storch H (2006) Long-term persistence in climate and the detection problem. Geophys Res Lett 33:L06718. doi:10.1029/2005GL025591

    Article  Google Scholar 

  • Sabine C, Feely R, Gruber N, Key R, Lee K, Bullister J, Wanninkhof R, Wong C, Wallace D, Tilbrook B, Millero F, Peng T, Kozyr A, Ono T, Rios A (2004) The ocean sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Sagan C, Chyba C (1997) The early faint sun paradox. Science 276:1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Scafetta N, West BJ (2006) Phenomenological solar contribution to the 1900-2000 global surface warming. Geophys Res Lett 33 doi:10.1029/2005GL025539

  • Scafetta N, West BJ (2007) Phenomenological reconstructions of the solar signature in the NH surface temperature records since 1600. J Geophys Res 112:D24S03. doi:doi:10.1029/2007JD008437

    Article  Google Scholar 

  • Schär C, Vidale PL, LĂĽthi D, Frei C, Haeberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  CAS  Google Scholar 

  • Schneider SH (2001) Earth systems: engineering and management. Nature 409:417–421

    Article  CAS  PubMed  Google Scholar 

  • Schneider SH (2008) Geoengineering: could we or should we make it work? Phil Trans R Soc 366:3843–3862

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: From air pollution to climate change, 2nd edn. Wiley, New York, p 1203

    Google Scholar 

  • Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science 310:841–844

    Article  CAS  PubMed  Google Scholar 

  • Solanki SK, Krivova N (2003) Can solar variability explain global warming since 1970? J Geophys Res 108. doi:10.1029/2002JA009753

    Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schussler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to previous 11, 000 years. Nature 431:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Steffen W, Crutzen PJ, McNeill JR (2007) The anthropocene: Are humans now overwhelming the great forces of nature? Ambio 36:614–621

    Article  CAS  PubMed  Google Scholar 

  • Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–272

    Article  Google Scholar 

  • Stott PA, Stone AD, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614

    Article  CAS  PubMed  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes- an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211

    Article  Google Scholar 

  • Thuiller W (2007) Biodiversity-climate change and the ecologist. Nature 448:550–552

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Albert C, AraĂşjo MB, Berry PM, Cabeza M, Guisan G, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Tol RSJ (2008) Economic scenarios for global change. In: von Storch H, Tol RSJ, Flöser G (eds) Envioronmental crises - science and policy. Springer, Berlin, pp 17–35

    Google Scholar 

  • Trenberth KE (1992) Climate system modeling. Cambridge University Press, Cambridge, p 788

    Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 24:741–758

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Wiley, New York, p 456

    Google Scholar 

  • UN (1992) United Nations Framework Convention on Climate Change. Report FCCC/INFORMAL/84, GE.05-62220 (E), United Nations http://unfccc.int/resource/docs/convkp/conveng.pdf

  • Wallace JM, Hobbs PV (2006) Atmospheric sciences: an introductory survey, 2nd edn. Academic, San Diego, CA 483

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6(3):169–185

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years. Nature 451:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • Wanner H, Beer J, BĂĽtikofer J, Crowley TJ, Cubasch U, FlĂĽckiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, KĂĽttel M, MĂĽller SA, Prentice IC, Solomina O, Stocker TF, Tarasovk P, Wagner M, Widmann M (2008) Mid- to late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  • Washington WM, Parkinson CL (2005) An introduction to three dimensional climate modeling. University Science Books, Sausalito, CA, p 354

    Google Scholar 

  • Weart S (2008) The discovery of global warming. Revised and expanded edition. Harvard University Press, Harvard 190

    Google Scholar 

  • Webster PJ (1994) The role of hydrological processes in ocean-atmosphere interactions. Rev Geophys 32:427–476

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309(5742):1844–1846

    Article  CAS  PubMed  Google Scholar 

  • Witt A, Schumann AY (2005) Holocene climate variability on millennial scales recorded in Greenland ice cores. Nonlin Processes Geophys 12:345–352

    Article  Google Scholar 

  • von Storch H (2008) Climate change scenarios - purpose and construction. In: von Storch H, Tol RSJ, Flöser G (eds) Envioronmental crises - science and policy. Springer, Berlin, pp 5–15

    Google Scholar 

  • von Storch H, Zorita E, Jones J, Dimitriev Y, González-Rouco F, Tett S (2004) Reconstructing past climate from noisy data. Science 306:679–682

    Article  CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author thanks Dr. Jan Habel and Professor Thorsten Assmann for having given the opportunity to contribute to the symposium on relict species in Luxembourg. Prof. Raymond Pierrehumbert, University of Chicago, USA, Prof. Leo Donner, Princeton University, USA, and Dr. Victor Brovkin, MPI for Meteorology, Hamburg, Germany, provided yet unpublished material, thank you all for the kindness. Valuable comments on the manuscript provided by Dr. Desmond Murphy are gratefully acknowledged. A part of the work is based on lectures on environmental meteorology and climate physics by the author at the University of LĂĽneburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Quante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Quante, M. (2010). The Changing Climate: Past, Present, Future. In: Habel, J.C., Assmann, T. (eds) Relict Species. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92160-8_2

Download citation

Publish with us

Policies and ethics