A Method of the Extraction of Texture Feature

  • Haifang Li
  • Lihuan Men
  • Junjie Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5370)


In order to understand the emotional information of the color image, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap’ between the visual features and the richness of human perception. In this paper, we firstly get the ROI using the Eye tracker and divide every image into two regions including Regions of Interest (ROI) and Non- Regions of Interest (Non-ROI). Secondly, we use the analytical hierarchy process (AHP) to provide a systematical way to evaluate the fit weights of ROI and Non-ROI. Finally, using the improved GLCM, we extract the texture feature of the two regions including ROI and Non-ROI, and get the whole texture feature. The algorithm is tested that the average detection rate of the proposed method is up to the same method using GLCM.


Regions of Interest (ROI) Texture feature Gray Level Co-occurrence Matrix (GLCM) Analytical Hierarchy Process (AHP) Weight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramey, N.A., Ying, H.S., Irsch, K.: A novel haploscopic viewing apparatus with a three-axis eye tracker. Journal of AAPOS.2008.01.019Google Scholar
  2. 2.
    Clarke, A.H., Ditterich, J., Druen, K., Schonfeld, U., Steineke, C.: Using high frame rate CMOS sensors for three-dimensional eye tracking. Behav. Res. Methods Instrum. Comput. 34, 549–560 (2002)CrossRefGoogle Scholar
  3. 3.
    Hough, P.V.C.: Methods and means for recognizing complex patterns. U.S. Patent 3069654 (1962)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)CrossRefzbMATHGoogle Scholar
  5. 5.
    Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified Hough transform. IEEE Trans. Comput. 27, 777–781 (1978)CrossRefGoogle Scholar
  6. 6.
    Moore, S.T., Haslwanter, T., Curthoys, I.S., Smith, S.T.: A geometric basis for measurement of three-dimensional eye position using image processing. Vision Res. 36, 445–459 (1996)CrossRefGoogle Scholar
  7. 7.
    Cheng, S.-C., Chen, M.-Y., Chang, H.-Y., Chou, T.-C.: Semantic-based facial expression recognition using analytical hierarchy process (2007)Google Scholar
  8. 8.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: IEEE Trans. Syst. Man Cybern.  3, 610–621 (1973)Google Scholar
  9. 9.
    Tomita, F., Tsuji, S.: Computer Analysis of Visual Textures. Kluwer Academic Publishing, Massachusetts (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Weszka, J.S., Dyer, C.R., Rosenfeld, A.: IEEE Trans. Syst. Man Cybern.  5, 269–285 (1976)Google Scholar
  11. 11.
    Al-Janobi, A.: Pattern Recogn.  34, 171–180 (2001)Google Scholar
  12. 12.
    Schmid, C., Mohr, R.: IEEE Transactions on Pattern Analysis and Machine Intelligence.  19(5), 530 (1997)Google Scholar
  13. 13.
    Tian, Q., Sebe, N., Lew, M.S., et al.: Journal of Electronic Imaging.  10(4), 835 (2001)Google Scholar
  14. 14.
    Moghaddam, B., Biermann, H., Margaritis, D.: Defining image content with multiple regions of interest. In: Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries (CVPR 1999), p. 350 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Haifang Li
    • 1
  • Lihuan Men
    • 1
  • Junjie Chen
    • 1
  1. 1.College of Computer and SoftwareTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations