Particle Swarm Optimization Applied to Restoration of Electrical Energy Distribution Systems

  • Germano Lambert-Torres
  • Helga Gonzaga Martins
  • Maurilio Pereira Coutinho
  • Camila Paes Salomon
  • Leonardo Schilling Filgueiras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5370)


This paper presents a technical application of the Particule Swarm Optimization - PSO technique to a reconfiguration problem of a electrical energy distribution system. The proposed methodology consists of the use of the maximization function of the number of loads supplied and the loss minimization by the expansion of the original PSO. The approach utilized the Distribution_System_01. A number of tests were carried out in the system to simulate several fault occurrences in the electrical energy transmission lines. The PSO algorithm encountered the optimal solution in a reasonable CPU time, compared to the dimension of the distribution system.


Particle Swarm Optimization Swarm Intelligence Electrical Power Systems Distribution Systems Restoration Distribution System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, Y., Gu, X.: Reconfiguration of Network Skeleton Based on Discrete Particle-Swarm Optimization for Black-Start Restoration. In: Proc. IEEE Power Engineering Society General Meeting, Montreal, Canadá (2006)Google Scholar
  2. 2.
    Coordinating Group of the Electrical Systems Planning: Decennial Plan of Expansion 1998/2007, Eletrobrás Report, Rio de Janeiro, Brazil (1998)Google Scholar
  3. 3.
    Rossi, R.: Systemic Hierarchic Classifier for Electrical Nets High-Voltage, Ph. D. Thesis, in Portuguese, Federal University of Itajuba, Itajuba, Brazil (2000)Google Scholar
  4. 4.
    Jardini, J.A.: Digital Systems for Automation of the Generation. In: Transmission and Distribution of Electric Energy, Portuguese. FCA Publisher, São Paulo (1996)Google Scholar
  5. 5.
    Experiences of CEMIG, ELETROPAULO, CESP, CPFL in Automation of the Distribution, I Conferência Internacional em Distribuição da Energia Elétrica, São Paulo, Brazil (1994)Google Scholar
  6. 6.
    Khushalani, S., Solanki, J.M., Schulz, N.N.: Optimized Restoration of Unbalanced Distribution Systems. IEEE Transactions Power Systems 22(2) (2006)Google Scholar
  7. 7.
    Ramírez-Rosado, I.J., Bernal-Agustín, J.L.: Genetic Algorithms Applied to the Design of Large Power Distribution Systems. IEEE Transactions Power Systems 13(2) (1998)Google Scholar
  8. 8.
    Esmin, A.A.A., Lambert-Torres, G., Zambroni de Souza, A.C.: A Hybrid Particle Swarm Optimization Applied to Loss Power Minimization. IEEE Transactions Power Systems XX(Y) (2003)Google Scholar
  9. 9.
    Chin, H.-C. and Su, Y.-S.: Application of the Ant-Base Network for Power System Restoration. In: IEEE/PES Transmission and Distribution Conference & Exhibition, Dailian, China (2005) Google Scholar
  10. 10.
    Salazar, H., Gallego, R., Romero, R.: Artificial Neural Networks and Clustering Techniques Applied in the Reconfiguration of Distribution Systems. IEEE Transactions Power and Delivery 21(3), 1735–1742 (2007)CrossRefGoogle Scholar
  11. 11.
    CIGRÉ: Pratical Use of Expert Systems in Planning and Operation of Power Systems, TF 38.06.03, Électra (146), pp. 30–67 (February 1993) Google Scholar
  12. 12.
    Buther, K.L., Momoh, J.A., Dias, L.G.: Expert System Assisted Identification of line faults on Delta-Delta Distribution Systems. In: Proc. 35th Midwest Simp. Circuits and Systems, vol. 2, pp. 1208–1213 (1992)Google Scholar
  13. 13.
    Hsiao, Y., Chien, C.: Enhancement of Restoration Service in Distribution Systems Using a Combination Fuzzy-GA Method. IEEE Transactions Power Systems 15 (2000)Google Scholar
  14. 14.
    Lambert-Torres, G., Quintana, V.H.: Intelligent System Application to Power System Problem Solving - Parts: I & II, Electrical Dept. & Computer Engineering, Waterloo University, Ontario, Canada (1996)Google Scholar
  15. 15.
    Bai, H., Zhao, B.: A Survey on Application of Swarm Intelligence Computation to Electric Power Systems. In: Proc. 6th World Congress on Intelligent Control and Automation, Dailian, China (2006)Google Scholar
  16. 16.
    Peng, X., Peng, Y., Dai, Y.F.: Swarm Intelligence Theory and Applications. Acta Electronica Sinca 31(12A), 1982–1988 (2003)Google Scholar
  17. 17.
    Kennedy, J., Eberhard, R.: The Particle Swarm: Social Adaptation of Knowledge. In: Proc. IEEE International Evolutionary Computation ICEC 1997, Indianapolis, USA, pp. 303–308 (1997)Google Scholar
  18. 18.
    Kennedy, J., Eberhard, R.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  19. 19.
    Nara, K., Kitagawa, M.: Distribution Systems Loss Minimum Reconfiguration by Simulated Annealing Method. In: Proc. IEEE Int. Conf. Advances Power Systems Control in Operation and Management, vol. 2, pp. 461–466 (1991)Google Scholar
  20. 20.
    Reynolds, C.W.: Flocks, herds and schools: A Distributed Behavioral Model. Computer Graphics 21(4) (1987)Google Scholar
  21. 21.
    Heppner, F., Grenander, U.: A Stochastic Nonlinear Model for Coordinated Bird Flocks; The Ubiquity of Chaos, AAAS, Washington (1990)Google Scholar
  22. 22.
    Hoffmeyer, J.: The Swarming body. In: Semiotics around the World; Proceedings of the Fifth Congress of the International Association for Semiotic Studies; Berkley (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Germano Lambert-Torres
    • 1
  • Helga Gonzaga Martins
    • 1
  • Maurilio Pereira Coutinho
    • 1
  • Camila Paes Salomon
    • 1
  • Leonardo Schilling Filgueiras
    • 1
  1. 1.Federal University of ItajubaItajubaBrazil

Personalised recommendations