Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5393))

Abstract

We present protocols for two flavors of oblivious transfer (OT): the Rabin and 1-out-of-2 OT based on the assumptions related to security of the McEliece cryptosystem and two zero-knowledge identification (ZKID) schemes, Stern’s from Crypto ’93 and Shamir’s from Crypto ’89, which are based on syndrome decoding and permuted kernels, respectively. This is a step towards diversifying computational assumptions on which OT – cryptographic primitive of central importance – can be based.

As a by-product, we expose new interesting applications for both ZKID schemes: Stern’s can be used for proving correctness of McEliece encryption, while Shamir’s – for proving that some matrix represents a permuted subcode of a given code.

Unfortunately, it turned out to be difficult to reduce the sender’s security of both schemes to a hard problem, although the intuition suggests a successful attack may allow to solve some long-standing problems in coding theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

    Google Scholar 

  3. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg (1990)

    Google Scholar 

  4. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEETIT: IEEE Transactions on Information Theory 44 (1998)

    Google Scholar 

  6. Courtois, N., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg (1988)

    Google Scholar 

  8. Damgård, I., Nielsen, J.: Commitment schemes and zero-knowledge protocols. Lecture notes, University of Aarhus (February 2008), http://www.daimi.au.dk/~ivan/ComZK08.pdf

  9. Dowsley, R., van de Graaf, J., Müller-Quade, J., Nascimento, A.: Oblivious transfer based on the mcEliece assumptions. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 107–117. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldreich, O.: Foundations of Cryptography - Volume 2 (Basic Applications). Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM, New York (1987)

    Google Scholar 

  13. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haitner, I.: Implementing oblivious transfer using collection of dense trapdoor permutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 394–409. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Kalai, Y.: Smooth projective hashing and two-message oblivious transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31. ACM, New York (1988)

    Google Scholar 

  17. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems - conversions for McEliece PKC. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correctiong Codes, 7th edn. North-Holland, Amsterdam (1992)

    Google Scholar 

  19. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN progress report, 42–44, 114–116 (1978)

    Google Scholar 

  20. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457 (2001)

    Google Scholar 

  21. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. In: Charpin, P., Helleseth, T. (eds.) Designs, Codes and Cryptography, vol. 49(1-3), pp. 289–305. Springer, Heidelberg (2008)

    Google Scholar 

  22. Poupard, G.: A realistic security analysis of identification schemes based on combinatorial problems. European Transactions on Telecommuncations 8(5), 417–480 (1997)

    Google Scholar 

  23. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report, Aiken Computation Laboratory, Harvard University, Tech. Memo TR-81 (1981)

    Google Scholar 

  24. Sendrier, N.: On the security of the McEliece public-key cryptosystem. In: Blaum, M., Farrell, P.G., van Tilborg, H. (eds.) Proceedings of Workshop honoring Prof. Bob McEliece on his 60th birthday, pp. 141–163. Kluwer, Dordrecht (2002)

    Google Scholar 

  25. Shamir, A.: An efficient identification scheme based on permuted kernels. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 606–609. Springer, Heidelberg (1990)

    Google Scholar 

  26. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  27. Vaudenay, S.: Cryptanalysis of the Chor–Rivest cryptosystem. J. Cryptology 14(2), 87–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kobara, K., Morozov, K., Overbeck, R. (2008). Coding-Based Oblivious Transfer. In: Calmet, J., Geiselmann, W., Müller-Quade, J. (eds) Mathematical Methods in Computer Science. Lecture Notes in Computer Science, vol 5393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89994-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89994-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89993-8

  • Online ISBN: 978-3-540-89994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics