Abstract
Face recognition is one of the most challenging biometric modalities for personal identification. This is due to a number of factors, including the complexity and variability of the signal captured by a face device. Several issues incur in the management of a face template as user’s identity. Data dimensionality reduction, compactness of the representation, uniqueness of the template and ageing effects, are just but a few of the issues to be addressed. In this paper we present the current state of the art in face recognition technology and how this related to the proper management of a user’s identity. Some real cases are presented and some conclusions are drawn.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions Pattern Analysis and Machine Intelligence 12(1), 103–108 (1990)
Turk, M., Pentland, A.P.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1999)
Chengjun, L.: Gabor-based kernel pca with fractional power polynomial models for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5), 572–581 (2004)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Li, S.Z., Hou, X.W., Zhang, H.J.: Learning spatially localized, parts-based representation. In: Proceedings CVPR, pp. 207–212 (2001)
Yu, H., Yang, J.: A direct lda algorithm for high-dimensional data with application to face recognition. Pattern Recognition 34, 2067–2070 (2001)
Juwei, L., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using lda-based algorithms. IEEE Transactions on Neural Networks 14(1), 195–200 (2003)
Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12, 2385–2404 (2000)
Muller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-Based Learning Algorithms. IEEE Trans. Neural Networks 12(2), 181–201 (2001)
Juwei, L., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks 14(1), 117–126 (2003)
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Muller, K.-R.: Fisher Discriminant Analysis with Kernels. In: Proceedings IEEE Int’l Workshop Neural Networks for Signal Processing IX, pp. 41–48 (August 1999)
Mika, S., Ratsch, G., Scholkopf, B., Smola, A., Weston, J., Muller, K.-R.: Invariant Feature Extraction and Classification in Kernel Spaces. In: Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (1999)
Jain, A.K., Chandrasekaran, B.: Dimensionality and sample size considerations in pattern recognition practice. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics. vol. 2, pp. 835–855. North-Holland, Amsterdam (1987)
Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(3), 252–264 (1991)
Martinez, A., Kak, A.: PCA versus LDA. IEEE Trans. Pattern Analysis and Machine Intelligence 23(2), 228–233 (2001)
Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1464 (2002)
Chengjun, L., Wechsler, H.: Independent component analysis of Gabor features for face recognition. IEEE Transactions on Neural Networks 14(4), 919–928 (2003)
Bach, F., Jordan, M.: Kernel Independent Component Analysis. Journal of Machine Learning Research 3, 1–48 (2002)
Lades, M., et al.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. on Computers 42(3), 300–311 (1993)
Zhang, J., Yan, Y., Lades, M.: Face recognition: eigenface, elastic matching, and neural nets. Proceedings of the IEEE 85(9), 1423–1435 (1997)
Wiskott, L., Fellous, J., Kruger, N., Malsburg, C.v.d.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)
Wiskott, L.: Phantom faces for face analysis. Pattern Recognition 30(6), 837–846 (1997)
Wurtz, R.P.: Object recognition robust under translations, deformations, and changes in background. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 769–775 (1997)
Duc, B., Fischer, S., Bigun, J.: Face authentication with Gabor information on deformable graphs. IEEE Transactions on Image Processing 8(4), 504–516 (1999)
Kotropoulos, C., Tefas, A., Pitas, I.: Frontal face authentication using discriminating grids with morphological feature vectors. IEEE Transactions on Multimedia 2(1), 14–26 (2000)
Kotropoulos, C., Tefas, A., Pitas, I.: Morphological elastic graph matching applied to frontal face authentication under well-controlled and real conditions. Pattern Recognition 33(12), 31–43 (2000)
Kotropoulos, C., Tefas, A., Pitas, I.: Frontal face authentication using morphological elastic graph matching. IEEE Transactions on Image Processing 9(4), 555–560 (2000)
Jackway, P.T., Deriche, M.: Scale-space properties of the multiscale morphological dilation-erosion. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(1), 38–51 (1996)
Tefas, A., Kotropoulos, C., Pitas, I.: Face verification using elastic graph matching based on morphological signal decomposition. Signal Processing 82(6), 833–851 (2002)
Kruger, N.: An algorithm for the learning of weights in discrimination functions using A priori constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 764–768 (1997)
Tefas, A., Kotropoulos, C., Pitas, I.: Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(7), 735–746 (2001)
Wang, H., Li, S.Z., Wang, Y., Zhang, W.: Illumination Modeling and Normalization for Face Recognition. In: Proceedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France (2003)
Chang, K.I., Bowyer, K.W., Flynn, P.J.: Face Recognition Using 2D and 3D Facial Data. In: Proceedings Workshop in Multimodal User Authentication, Santa Barbara, California, pp. 25–32 (December 2003)
Chang, K.I., Bowyer, K.W., Flynn, P.J.: An Evaluation of Multi-modal 2D+3D Face Biometrics. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2004)
González-Jiménez, D., Bicego, M., Tangelder, J.W.H., Schouten, B.A.M., Ambekar, O., Alba-Castro, J.L., Grosso, E., Tistarelli, M.: Distance Measures for Gabor Jets-Based Face Authentication: A Comparative Evaluation. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 474–483. Springer, Heidelberg (2007)
Bicego, M., Brelstaff, G., Brodo, L., Grosso, E., Lagorio, A., Tistarelli, M.: Distinctiveness of faces: a computational approach. ACM Transactions on Applied Perception 5(2) (2008)
Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face Identification by SIFT-based Complete Graph Topology. In: Proceedings of IEEE Int.l Workshop on Automatic Identification Advanced Technologies (AutoId 2007), Alghero, pp. 69–73, June 7-8 (2007)
Rattani, A., Kisku, D.R., Bicego, M., Tistarelli, M.: Feature Level Fusion of Face and Fingerprint Biometrics. In: Proc. of first IEEE Int.l Conference on Biometrics: Theory, Applications and Systems (BTAS 2007), Washington DC, September 27-29 (2007)
Gordon, G., Lewis, M.: Face Recognition Using Video Clips and Mug Shots. In: Proceedings of the Office of National Drug Control Policy (ONDCP) International Technical Symposium (Nashua, NH) (October 1995)
Li, Y., Gong, S., Liddell, H.: Video-based online face recognition using identity surfaces. In: Proceedings IEEE International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, Vancouver, Canada, pp. 40–46 (July 2001)
Li, Y., Gong, S., Liddell, H.: Modelling faces dynamically across views and over time. In: Proceedings IEEE International Conference on Computer Vision, Vancouver, Canada, pp. 554–559 (July 2001)
Lucas, S.M.: Continuous n-tuple classifier and its application to real-time face recognition. In: IEE Proceedings-Vision Image and Signal Processing, vol. 145(5), p. 343 (October 1998)
Lucas, S.M., Huang, T.K.: Sequence recognition with scanning N-tuple ensembles. In: Proceedings ICPR 2004 (III), pp. 410–413 (2004)
Eickeler, S., Müller, S., Rigoll, G.: Recognition of JPEG compressed face images based on statistical methods. Image and Vision Computing 18(4), 279–287 (2000)
Raytchev, B., Murase, H.: Unsupervised recognition of multi-view face sequences based on pairwise clustering with attraction and repulsion. Computer Vision and Image Understanding 91(1–2), 22–52 (2003)
Raytchev, B., Murase, H.: VQ-Faces: Unsupervised Face Recognition from Image Sequences. In: Proceedings ICIP 2002 (II), pp. 809–812 (2002)
Raytchev, B., Murase, H.: Unsupervised Face Recognition from Image Sequences. In: Proceedings ICIP 2001(I), pp. 1042–1045 (2001)
Zhou, S., Krueger, V., Chellappa, R.: Probabilistic recognition of human faces from video. Computer Vision and Image Understanding 91(1–2), 214–245 (2003)
Zhou, S., Krueger, V., Chellappa, R.: Face Recognition from Video: A Condensation Approach. In: Proceedings IEEE AFGR 2002, pp. 212–217 (2002)
Zhou, S., Chellappa, R.: Probabilistic Human Recognition from Video. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, p. 681. Springer, Heidelberg (2002)
Zhou, S., Chellappa, R.: A robust algorithm for probabilistic human recognition from video. In: Proceedings ICPR 2002 (I), pp. 226–229 (2002)
Zhou, S., Chellappa, R.: Rank constrained recognition under unknown illuminations. In: Proceedings AMFG 2003, pp. 11–18 (2003)
Zhou, S.K., Chellappa, R., Moghaddam, B.: Visual Tracking and Recognition Using Appearance-Adaptive Models in Particle Filters. Image Processing 13(11), 1491–1506 (2004)
Zhou, S.K., Chellappa, R., Moghaddam, B.: Intra-personal kernel space for face recognition. In: Proceedings IEEE AFGR 2004, pp. 235–240 (2004)
Zhou, S.K., Chellappa, R.: Multiple-exemplar discriminant analysis for face recognition. In: Proceedings ICPR 2004 (IV), pp. 191–194 (2004)
Zhou, S.K., Chellappa, R.: Probabilistic identity characterization for face recognition. In: Proceedings CVPR 2004 (II), pp. 805–812 (2004)
Howell, A.J., Buxton, H.: Towards Unconstrained Face Recognition from Image Sequences. In: Proceeding. of the IEEE International Conference on Automatic Face and Gesture Recognition (FGR 1996), Killington, VT, pp. 224–229 (1996)
Li, Y., Gong, S., Liddell, H.: Support Vector Regression and Classification Based Multiview Face Detection and Recognition. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2000), Grenoble, France, pp. 300–305 (2000)
Roli, F., Kittler, J. (eds.): MCS 2002. LNCS, vol. 2364. Springer, Heidelberg (2002)
Achermann, B., Bunke, H.: Combination of Classifiers on the Decision Level for Face Recognition. Technical Report IAM-96-002, Institut für Informatik und angewandte Mathematik, Universität Bern (January 1996)
Mou, D., Schweer, R., Rothermel, A.: Automatic Databases for Unsupervised Face Recognition. In: Proceedings FaceVideo 2004, p. 90 (2004)
Song, X., Lin, C.Y., Sun, M.T.: Cross-Modality Automatic Face Model Training from Large Video Databases. In: Proceedings FaceVideo 2004, p. 91 (2004)
Arandjelovic, O., Cipolla, R.: Face Recognition from Face Motion Manifolds using Robust Kernel Resistor-Average Distance. In: Proceedings FaceVideo 2004, p. 88 (2004)
Aggarwal, G., Chowdhury, A.K.R., Chellappa, R.: A system identification approach for video-based face recognition. In: Proceedings ICPR 2004 (IV), pp. 175–178 (2004)
Matsui, A., Clippingdale, S., Uzawa, F., Matsumoto, T.: Bayesian face recognition using a Markov chain Monte Carlo method. In: Proceedings ICPR 2004 (III), pp. 918–921 (2004)
Clippingdale, S., Fujii, M.: Face recognition for video indexing: Randomization of face templates improves robustness to facial expression. In: García, N., Salgado, L., Martínez, J.M. (eds.) VLBV 2003. LNCS, vol. 2849, pp. 32–40. Springer, Heidelberg (2003)
Clippingdale, S., Ito, T.: A Unified Approach to Video Face Detection, Tracking and Recognition. In: Proceedings ICIP 1999 (I), pp. 662–666 (1999)
Roark, D.A., O’Toole, A.J., Abdi, H.: Human recognition of familiar and unfamiliar people in naturalistic video. In: Proceedings AMFG 2003, pp. 36–41 (2003)
Gorodnichy, D.O.: Facial Recognition in Video. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 505–514. Springer, Heidelberg (2003)
Lee, K.C., Ho, J., Yang, M.H., Kriegman, D.J.: Video-based face recognition using probabilistic appearance manifolds. In: Proceedings CVPR 2003 (I), pp. 313–320 (2003)
Liu, X., Chen, T.: Video-based face recognition using adaptive hidden Markov models. In: Proceedings CVPR 2003 (I), pp. 340–345 (2003)
Huang, K.S., Trivedi, M.M.: Streaming face recognition using multicamera video arrays. In: Proceedings ICPR 2002 (IV), pp. 213–216 (2002)
Gross, R., Brajovic, V.: An Image Preprocessing Algorithm for Illumination Invariant Face Recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 10–18. Springer, Heidelberg (2003)
Gross, R., Yang, J., Waibel, A.: Growing Gaussian Mixture Models for Pose Invariant Face Recognition. In: Proceedings ICPR 2000 (I), pp. 1088–1091 (2000)
Krüger, V., Gross, R., Baker, S.: Appearance-Based 3-D Face Recognition from Video. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, p. 566. Springer, Heidelberg (2002)
Krüger, V., Zhou, S.: Exemplar-Based Face Recognition from Video. In: Proceedings, IEEE AFGR 2002, pp. 175–180 (2002)
Shakhnarovich, G., Fisher III, J.W., Darrell, T.: Face recognition from long-term observations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 851–865. Springer, Heidelberg (2002)
Shakhnarovich, G., Viola, P.A., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: Proceedings IEEE AFGR 2002, pp. 14–21 (2002)
Li, Y., Gong, S., Liddell, H.: Video-based online face recognition using identity surfaces. In: Proceedings IEEE ICCV Workshop on RATFG 2001, pp. 40–46 (2001)
Weng, J., Evans, C.H., Hwang, W.S.: An Incremental Learning Method for Face Recognition under Continuous Video Stream. In: Proceedings IEEE AFGR 2000, pp. 251–256 (2000)
Ho, P.: Rotation Invariant Real-time Face Detection and Recognition System. MIT-AI Memo 2001-010, May 31 (2001)
Yamaguchi, O., Fukui, K., Maeda, K.: Face Recognition Using Temporal Image Sequence. In: Proceedings IEEE AFGR 1998, pp. 318–323 (1998)
Nagao, K., Sohma, M.: Weak Orthogonalization of Face and Perturbation for Recognition. In: Proceedings CVPR 1998, pp. 845–852 (1998)
Nagao, K., Sohma, M.: Recognizing faces by weakly orthogonalizing against perturbations. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 613. Springer, Heidelberg (1998)
Edwards, G.J., Taylor, C.J., Cootes, T.F.: Improving Identification Performance by Integrating Evidence from Sequences. In: Proceedings CVPR 1999 (I), pp. 486–491 (1999)
Cootes, T.F., Wheeler, G.V., Walker, K., Taylor, C.J.: Coupled-View Active Appearance Models. In: Proceedings BMVC 2000, pp. 52–61 (2000)
Edwards, G.J., Taylor, C.J., Cootes, T.F.: Learning to Identify and Track Faces in Image Sequences. In: Proceedings IEEE AFGR 1998, pp. 260–265 (1998)
Déniz, M.C., Lorenzo, J., Hernández, M.: An incremental learning algorithm for face recognition. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 1–9. Springer, Heidelberg (2002)
Fukui, K., Yamaguchi, O.: Face recognition using multiviewpoint patterns for robot vision. In: Proceedings International Symposium of Robotics Research (2003)
Bicego, M., Grosso, E., Tistarelli, M.: Person authentication from video of faces: a behavioral and physiological approach using Pseudo Hierarchical Hidden Markov Models. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 113–120. Springer, Heidelberg (2006)
Tistarelli, M., Bicego, M., Grosso, E.: Dynamic face recognition: From human to machine vision. In: Tistarelli, M., Bigun, J. (eds.) Image and Vision Computing: Special issue on Multimodal Biometrics (2007)doi:10.1016/j.imavis.2007.05.006.
Phillips, J.J., Flynn, P., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Jaesik, M., Worek, W.: Overview of the Face Recognition Grand Challenge. In: Proceedings CVPR 2005, pp. 947–954 (2005)
Phillips, J.J., Flynn, P., Scruggs, T., Bowyer, K.W., Worek, W.: Preliminary Face Recognition Grand Challenge Results. In: Proceedings 7th International Conference on Automatic Face and Gesture Recognition, pp. 15–24 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tistarelli, M., Grosso, E. (2008). Identity Management in Face Recognition Systems. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds) Biometrics and Identity Management. BioID 2008. Lecture Notes in Computer Science, vol 5372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89991-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-89991-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89990-7
Online ISBN: 978-3-540-89991-4
eBook Packages: Computer ScienceComputer Science (R0)