Skip to main content

Abstract

The thermal state of the hypersonic vehicle surface governs on the one hand thermal surface effects (these are the influence of wall-temperature and temperature gradient in the gas at the wall on viscous and thermo-chemical phenomena at and near the vehicle surface) and on the other hand the thermal loads on the vehicle surface (regarding the structure and material layout of a TPS or a hot primary structure), Fig. 9.1 [1]. The thermal state of the surface indirectly governs also mechanical (pressure and shear stress) loads via its influence on primarily the wall-shear stress, for instance, in erosion processes at a TPS. This is, of course, a typical viscous thermal surface effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschel, E.H.: Basics of Aerothermodynamics. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 204. Springer, Heidelberg (2004)

    Google Scholar 

  2. Goodrich, W.D., Derry, S.M., Bertin, J.J.: Shuttle Orbiter boundary layer Transition: A Comparison of Flight and Wind-Tunnel Data. AIAA-Paper 83-0485 (1983)

    Google Scholar 

  3. Wilcox, D.C.: Turbulence Modelling for CFD. DCW Industries, La Cañada, CAL, USA (1998)

    Google Scholar 

  4. Smits, A.J., Dussauge, J.-P.: Turbulent Shear Layers in Supersonic Flow, 2nd edn. AIP/Springer, New York (2004)

    Google Scholar 

  5. Neumann, R.D.: Defining the Aerothermodynamic Methodology. In: Bertin, J.J., Glowinski, R., Periaux, J. (eds.) Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 125–204. Birkhäuser, Boston (1989)

    Google Scholar 

  6. Hayes, J.R., Neumann, R.D.: Introduction to the Aerodynamic Heating Analysis of Supersonic Missiles. In: Mendenhall, M.R. (ed.) Tactical Missile Aerodynamics: Prediction Methodology. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, pp. 63–110 (1992)

    Google Scholar 

  7. Bertin, J.J.: Hypersonic Aerothermodynamics. AIAA Education Series, Washington, D.C (1994)

    Google Scholar 

  8. Streit, T., Martin, S., Eggers, T.: Approximate Heat Transfer Methods for Hypersonic Flow in Comparison with Results Provided by Numerical Navier-Stokes Solutions. DLR FB 94-36 (1994)

    Google Scholar 

  9. Simeonides, G.: Generalized Reference-Enthalpy Formulation and Simulation of Viscous Effects in Hypersonic Flow. Shock Waves 8(3), 161–172 (1998)

    Article  MATH  Google Scholar 

  10. Fujii, K.: Progress and Future Prospects of CFD in Aerospace – Wind Tunnel and Beyond. Progress in Aerospace Sciences 41(6), 455–470 (2005)

    Article  Google Scholar 

  11. Haney, J.W.: Orbiter (Pre STS-1) Aeroheating Design Data Base Development Methodology: Comparison of Wind Tunnel and Flight Test Data. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 607–675 (1995)

    Google Scholar 

  12. Davy, W.C., Green, M.J.: A Review of the Infrared Imagery of Shuttle (IRIS) Experiment. In: Throckmorton, D. A. (ed.), Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 215–232 (1995)

    Google Scholar 

  13. Throckmorton, D.A., Zoby, E.V.: Shuttle Infrared Leeside Temperature Sensing (SILTS) Experiment. In: Throckmorton, D. A. (ed.), Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 233–248 (1995)

    Google Scholar 

  14. Throckmorton, D.A. (ed.): Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1 and 2 (1995)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). The Thermal State of a Hypersonic Vehicle Surface. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics