Skip to main content

Abstract

The design and development approaches of aerospace vehicles of either kind are basically the same as those of conventional aircraft. Their background is given by Cayley’s design paradigm. Sir George Cayley (1773-1857) was an early British aviation pioneer who conceived the essentials of the aircraft as we know it today [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson Jr., J.D.: The Airplane – A History of Its Technology, AIAA, Reston (2002)

    Google Scholar 

  2. Hirschel, E.H.: Towards the Virtual Product in Aircraft Design? In: Periaux, J., Champion, M., Gagnepain, J.-J., Pironneau, O., Stouflet, B., Thomas, P. (eds.) Fluid Dynamics and Aeronautics New Challenges. CIMNE Handbooks on Theory and Engineering Applications of Computational Methods, Barcelona, Spain, pp. 453–464 (2003)

    Google Scholar 

  3. Vos, J.B., Rizzi, A., Darracq, D., Hirschel, E.H.: Navier-Stokes Solvers in European Aircraft Design. Progress in Aerospace Sciences 38, 601–697 (2002)

    Article  Google Scholar 

  4. Hirschel, E.H.: Historical Perspective on Programs, Vehicles and Technology Issues. In: Proc. RTO/AVT/VKI Lecture Series AVT-116 Critical Technologies for Hypersonic Vehicle Development, Rhode-Saint-Gènèse, Belgium, May 10-14. RTO-EN-AVT-116, pp. 1-1–1-22 (2005)

    Google Scholar 

  5. Hirschel, E.H.: Basics of Aerothermodynamics. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 204. Springer, Heidelberg (2004)

    Google Scholar 

  6. Hammond, W.E.: Space Transportation: A System Approach to Analysis and Design. AIAA Educations Series, Reston, Va (1999)

    Google Scholar 

  7. Hajela, P.: Soft Computing Multidisciplinary Aerospace Design – New Directions for Research. RTO MP-35, paper 17 (1999)

    Google Scholar 

  8. Alexandrov, N., Hussaini, Y. (eds.): Multidisciplinary Design Optimization: State of the Art. SIAM Publications, Philadelphia (1992)

    Google Scholar 

  9. Haykin, S.: Neural Networks – A Comprehensive Foundation. Macmillan Publishing Company, Englewood (1994)

    MATH  Google Scholar 

  10. Hajela, P.: Neural Networks – Applications in Modeling and Design of Structural Systems. CISM Lecture Notes, Udine, Italy (1998)

    Google Scholar 

  11. Zadeh, L.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yuan, W.G., Quan, W.W.: Fuzzy Optimum Design of Structures. Engineering Optimization 8, 291–300 (1985)

    Article  Google Scholar 

  13. Haftka, R.T., Gurdal, Z.: Elements of Structural Optimization. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  14. Hajela, P., Yoo, J.: Constraint Handling in Genetic Search Using Expression Strategies. AIAA Journal 34(11), 2414–2420 (1996)

    Article  MATH  Google Scholar 

  15. Aris, R.: Vectors, Tensors and the Basic Equations of Fluid Mechanics. Prentice Hall, Englewood Cliffs (1962)

    MATH  Google Scholar 

  16. Farhat, C., Lesoinne, M., Chen, P.S.: Parallel Heterogeneous Algorithms for the Solution of Three-Dimensional Transient Coupled Aeroelastic Problems. AIAA-Paper 95-1290 (1995)

    Google Scholar 

  17. Lesoinne, M., Farhat, C.: Geometric Conservation Laws for Aeroelastic Computations Using Unstructured Dynamic Meshes. AIAA-Paper 95-1709-CP (1995)

    Google Scholar 

  18. Farhat, C., Lesoinne, M.: Higher-Order Staggered and Subiteration Free Algorithms for Coupled Dynamic Aeroelasticity Problems. AIAA-Paper 98-0516 (1998)

    Google Scholar 

  19. Farhat, C., Lesoinne, M., LeTallec, P.: Load and Motion Transfer Algorithms for Fluid/Structure Interaction Problems with Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretisation and Application to Aeroelasticity. Comput. Methods Appl. Mech. Eng. 157, 95–114 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gupta, K.K., Meek, J.L.: Finite Element Multidisciplinary Analysis. AIAA Education Series, Reston, Va (2000)

    Google Scholar 

  21. Zienkiewics, O.C., Taylor, R.L., Zhu, J.Z.: Finite Element Method: Its Basis and Fundamentals. Elsevier Butterworth-Heinemann, New York (2005)

    Google Scholar 

  22. Bathe, K.J.: Finite Element-Methoden. Springer, Heidelberg (2002)

    Google Scholar 

  23. Schäfer, R.: Thermisch-mechanisches Verhalten heisser Strukturen in der Wechselwirkung mit einem umströmenden Fluid (Thermo-Mechanical Behavior of Hot Structures in Interaction with a Fluid). Doctoral Thesis, Technische Universität Stuttgart, Germany, DLR Forschungsbericht 2005 - 02 (2005)

    Google Scholar 

  24. Gupta, K.K., Petersen, K.L., Lawson, C.L.: On Some Recent Advances in Multidisciplinary Analysis of Hypersonic Vehicles. AIAA-Paper 92-5026 (1992)

    Google Scholar 

  25. Gupta, K.K.: Development of a Finite Element Aeroelastic Analysis Capability. Journal of Aircraft 33(5), 995–1002 (1996)

    Article  Google Scholar 

  26. Cowan, T.J., Arena Jr., A.S., Gupta, K.K.: Accelerating CFD-Based Aeroelastic Predictions Using System Identification. AIAA-Paper 98-4152 (1998)

    Google Scholar 

  27. Cowan, T.J., Arena Jr., A.S., Gupta, K.K.: Development of a Discrete-Time Aerodynamic Model for CFD-Based Aeroelastic Analysis. AIAA-Paper 99-0765 (1999)

    Google Scholar 

  28. Gupta, K.K., Voelker, L.S., Bach, C., Doyle, T., Hahn, E.: CFD-Based Aeroelastic Analysis of the X-43 Hypersonic Flight Vehicle. AIAA-Paper 2001-0712 (2001)

    Google Scholar 

  29. Gupta, K.K., Bach, C., Doyle, T., Hahn, E.: CFD-Based Aeroservoelastic Analysis with Hyper-X Applications. AIAA-Paper 2004-0884 (2004)

    Google Scholar 

  30. Maute, K., Nikbay, M., Farhat, C.: Analytically Based Sensitivity Analysis and Optimization of Nonlinear Aeroelastic Systems. AIAA-Paper 2000-4825 (2000)

    Google Scholar 

  31. Tran, H., Farhat, C.: An Integrated Platform for the Simulation of Fluid-Structure-Thermal Interaction Problems. AIAA-Paper 2002-1307 (2002)

    Google Scholar 

  32. Selmin, V.: Coupled Fluid-Structure System. In: Haase, W., Selmin, V., Wingzell, B. (eds.) Progress in Computational Flow-Structure Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 81, pp. 13–20. Springer, Heidelberg (2003)

    Google Scholar 

  33. Patel, A., Hirsch, C.: All-hexahedra Unstructured Flow Solver for External Aerodynamics with Application to Aeroelasticity. In: Haase, W., Selmin, V., Wingzell, B. (eds.) Progress in Computational Flow-Structure Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 81, pp. 105–116. Springer, Heidelberg (2003)

    Google Scholar 

  34. Dervieux, A., Koobus, B., Schall, E., Lardat, R., Farhat, C.: Application of Unsteady Fluid-Structure Methods to Problems in Aeronautics and Space. In: Barton, N.G., Periaux, J. (eds.) Coupling of Fluids, Structures and Waves in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 85, pp. 57–70. Springer, Heidelberg (2003)

    Google Scholar 

  35. Maman, N., Farhat, C.: Matching Fluid and Structure Meshes for Aeroelastic Computations: A Parallel Approach. Computer & Structures 54, 779–785 (1995)

    Article  Google Scholar 

  36. Löhner, R.: Robust, Vectorized Search Algorithms for Interpolation of Unstructured Grids. J. of Comp. Phys. 118, 380–387 (1995)

    Article  MATH  Google Scholar 

  37. Grashof, J., Haase, W., Schneider, M., Schweiger, J., Stettner, M.: Static and Dynamic Aeroelastic Simulations in Transonic and Supersonic Flow. In: Haase, W., Selmin, V., Wingzell, B. (eds.) Progress in Computational Flow-Structure Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 81, pp. 39–46. Springer, Heidelberg (2003)

    Google Scholar 

  38. Lepage, C.H., Habashi, W.G.: Conservative Interpolation of Aerodynamic Loads for Aeroelastic Computations. AIAA-Paper 2000-1449 (2000)

    Google Scholar 

  39. Haase, W., Selmin, V., Wingzell, B. (eds.): Progress in Computational Flow-Structure Interactions. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 81. Springer, Heidelberg (2003)

    Google Scholar 

  40. Barton, N.G., Periaux, J. (eds.): Coupling of Fluids, Structures and Waves in Aeronautics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 85. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  41. Ballmann, J.: Flow Modulation and Fluid-Structure Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 84. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  42. Thornton, E.A., Dechaumphai, P.: Coupled Flow, Thermal, and Structural Analysis of Aerodynamically Heated Panels. J. of Aircraft 25(11), 1052–1059 (1988)

    Article  Google Scholar 

  43. Löhner, R., Yang, C., Cebral, J., Baum, J.D., Luo, H., Pelessone, D., Charman, C.: Fluid-Structure-Thermal Interaction Using a Loose Coupling Algorithm and Adaptive Unstructered Grids. AIAA-Paper 98-2419 (1998)

    Google Scholar 

  44. Haupt, M., Horst, P.: Coupling of Fluid and Structure Analysis Codes for Air- and Spacecraft Applications. In: Bathe, K.J. (ed.) Proceedings First MIT Conference on Computational Fluid and Solid Mechanics. Computational Fluid and Solid Mechanics, pp. 1226–1231. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  45. Haupt, M., Niesner, R., Horst, P.: Flexible Software Environment for the Coupled Aerothermodynamic-Thermal-Mechanical Analysis of Structures. ESA SP-563 (2005)

    Google Scholar 

  46. Schäfer, R., Mack, A., Esser, B., Gülhan, A.: Fluid-Structure Interaction on a Generic Model of a Reentry Vehicle Nosecap. In: Librescu, L., Marzocca, P. (eds.) Proceedings 5th International Congress on Thermal Stresses and Related Topics. Blacksburg, Virginia (2003)

    Google Scholar 

  47. Haupt, M., Niesner, R., Unger, R., Horst, P.: Computational Aero-Structural Coupling for Hypersonic Applications. AIAA Paper 2006-3252 (2006)

    Google Scholar 

  48. Mack, A.: Analyse von heissen Hyperschallströmungen um Steuerklappen mit Fluid-Struktur Wechselwirkung (Analysis of Hot Hypersonic Flow Past Control Surfaces with Fluid-Structure Coupling). Doctoral Thesis, Technische Universität Braunschweig, Germany, DLR Forschungsbericht 2005 - 23 (2005)

    Google Scholar 

  49. Haupt, M., Niesner, R., Horst, P., Hannemann, V., Mack, A., Brandl, A.: Numerical and Software Concepts for the Coupling of Structural Thermal-Mechanical and Fluid-Dynamic Codes. In: Librescu, L., Marzocca, P. (eds.) Proceedings 5th International Congress on Thermal Stresses and Related Topics. Blacksburg, Virginia (2003)

    Google Scholar 

  50. N.N.: MpCCI, Mesh-based parallel Code Coupling Interface, Specification of MpCCI Version 1.3. Fraunhofer Institute for Algorithm and Scientific Computing SCAI (2002)

    Google Scholar 

  51. Weiland, C.: Stage Separation Aerothermodynamics. AGARD-R-813, pp. 11-1–11-28 (1996)

    Google Scholar 

  52. Gupta, K.K.: Development and Application of an Integrated Multidisciplinary Analysis Capability. International Journal for Numerical Methods in Engineering 40, 533–550 (1997)

    Article  Google Scholar 

  53. Haupt, M., Kossira, H.: Analysis of Structures in Hypersonic Fluid Flow Including the Fluid-Structure Interaction. ESA SP-428 (1998)

    Google Scholar 

  54. GĂĽlhan, A.: Investigation of Gap Heating on a Flap Model in the Arc Heated Facility L3K. Deutsches Zentrum fĂĽr Luft- und Raumfahrt, TETRA Programme, TET-DLR-21-TN-3101 (1999)

    Google Scholar 

  55. Behr, R., Görgen, J.: CFD Analysis of Gap Flow Phenomena. Deutsches Zentrum für Luft- und Raumfahrt, TETRA Programme, TET-DASA-21-TN-2403 (2000)

    Google Scholar 

  56. Mack, A., Schäfer, R.: Fluid Structure Interaction on a Generic Body-Flap Model in Hypersonic Flow. J. of Spacecraft and Rockets 42(5), 769–779 (2005)

    Article  Google Scholar 

  57. Esser, B., Gülhan, A., Schäfer, R.: Experimental Investigation of Thermal Fluid – Structure Interaction in High Enthalpy Flow. ESA SP-563 (2005)

    Google Scholar 

  58. Kuntz, D.W., Hassan, B., Potter, D.L.: An Iterative Approach for Coupling Fluid/Thermal Predictions of Ablating Hypersonic Vehicles. AIAA-Paper 99-3460 (1999)

    Google Scholar 

  59. Hassan, B., Kuntz, D.W., Salguero, D.E., Potter, D.L.: A Coupled Fluid/Thermal/Flight Dynamics Approach for Predicting Hypersonic Vehicle Performance. AIAA-Paper 2001-2903 (2001)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). Multidisciplinary Design Aspects. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics