Skip to main content

Abstract

Stabilization, trim, and control devices are the prerequisites for flyability and controllability of aerospace flight vehicles. Regarding re-entry flight of RV-W’s, we have mentioned in Section 2.1.2 that initially, at high altitudes, the reaction control system (RCS) is the major flight control system. Aerodynamic trim, stabilization and control surfaces take over further down on the trajectory. This is in contrast to CAV’s, where aerodynamic stabilization and control surfaces are the only devices. Obviously, deploying such devices result in a strong coupling of the thrust vector (and the aerothermoelasticity of the airframe), Sub-Section 2.2.3, into the flight dynamics, trim and control of the vehicle. Moreover, for ARV’s, the trajectory is such that they reach high altitudes in a situation similar to RW-V’s so that control surface effectiveness eventually is diminished and reaction control systems (RCS) have to be deployed. In other words, ARV’s require two different control systems. On the other hand, the capsule RV-NW’s, as a rule, have only RCS for flight control.

We begin this chapter with an introduction to trim and control surface aerothermodynamics, and concentrate then on the onset flow characteristics. Next treated is the asymptotic behavior of pressure, the thermal state of the surface and wall shear stress on the control surface, approximated here as a ramp. Related issues of reaction control systems are discussed briefly. Configurational considerations are presented regarding the discussed trim and control devices. Finally the results are summarized and simulation issues are examined. Our aim is to foster the understanding of the flow phenomena involved in the operation of stabilization, trim, and control devices and the problems related to their simulation with experimental and computational means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delery, J.M., Marvin, J.G.: Shock Wave/Boundary Layer Interactions. AGARDograph 280 (1986)

    Google Scholar 

  2. Dolling, D.S.: Fifty Years of Shock-Wave/boundary layer Interaction Research: What Next? AIAA J. 39(8), 1517–1531 (2001)

    Article  Google Scholar 

  3. Knight, D., Yan, H., Panaras, A.G., Zheltovodov, A.: Advances of CFD Prediction of Shock Wave Turbulent Boundary Layer Interactions. Progress in Aerospace Sciences 39, 121–184 (2003)

    Article  Google Scholar 

  4. Arnal, D., Delery, J.M.: Laminar-Turbulent Transition and Shock Wave/Boundary Layer Interaction. RTO-EN-AVT-116, pp. 4-1–4-46 (2005)

    Google Scholar 

  5. Simeonides, G.: Hypersonic Shock Wave Boundary Layer Interactions over Simplified Deflected Control Surface Configurations. AGARD-FDP/VKI Special Course, AGARD R-792, pp. 7-1–7-47 (1993)

    Google Scholar 

  6. Settles, G.S., Dolling, D.S.: Swept Shock Wave Boundary Layer Interactions. In: Hemsch, M.J., Nielsen, J.N. (eds.) Tactical Missiles Aerodynamics. AIAA Progress in Aeronautics, vol. 104, pp. 297–379 (1986)

    Google Scholar 

  7. Panaras, A.G.: Review of the Physics of Swept-Shock/Boundary Layer Interactions. Progress in Aerospace Sciences 32, 173–244 (1996)

    Article  Google Scholar 

  8. Smits, A.J., Dussauge, J.-P.: Turbulent Shear Layers in Supersonic Flow, 2nd edn. AIP/Springer, New York (2004)

    Google Scholar 

  9. Delery, J.M.: Shock Wave/Turbulent Boundary Layer Interaction and its Control. Progress in Aerospace Sciences 22, 209–280 (1985)

    Article  Google Scholar 

  10. Hirschel, E.H.: Basics of Aerothermodynamics, Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 204. Springer, Heidelberg (2004)

    Google Scholar 

  11. Wüthrich, S., Sawley, M.L., Perruchoud, G.: The Coupled Euler/Boundary Layer Method as a Design Tool for Hypersonic Re-Entry Vehicles. Zeit-schrift für Flugwissenschaften und Weltraumforschung (ZFW) 20(3), 137–144 (1996)

    Google Scholar 

  12. Häberle, J.: Einfluss heisser Oberflächen auf aerothermodynamische Flugeigenschaften von HOPPER/PHOENIX (Influence of Hot Surfaces on Aerothermodynamic Flight Properties of HOPPER/PHOENIX). Diploma Thesis, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Germany (2004)

    Google Scholar 

  13. Daimler-Benz Aerospace Space Infrastructure, FESTIP System Study Proceedings. FFSC-15 Suborbital HTO-HL System Concept Family. Dasa München/Ottobrunn, Germany (1999)

    Google Scholar 

  14. Wilcox, D.C.: Turbulence Modelling for CFD. DCW Industries, La Cañada, CAL, USA (1998)

    Google Scholar 

  15. Kliche, D.: Personal communication. München, Germany (2008)

    Google Scholar 

  16. Griffith, B.F., Maus, J.R., Best, J.T.: Explanation of the Hypersonic Longitudinal Stability Problem – Lessons Learned. In: Arrington, J.P., Jones, J.J. (eds.) Shuttle Performance: Lessons Learned. NASA CP-2283, Part 1, pp. 347–380 (1983)

    Google Scholar 

  17. Marini, M.: Analysis of Hypersonic Compression Ramp Laminar Flows under Sharp Leading Edge Conditions. Aerospace Science and Technology 5, 257–271 (2001)

    Article  MATH  Google Scholar 

  18. Henze, A., Schröder, W., Bleilebens, M., Olivier, H.: Numerical and Experimental Investigations on the Influence of Thermal Boundary Conditions on Shock Boundary Layer Interaction. Computational Fluid Dynamics J. 12(2), 401–407 (2003)

    Google Scholar 

  19. Simeonides, G.: Personal communication (2006)

    Google Scholar 

  20. Drougge, G.: An Experimental Investigation of the Influence of Strong Adverse Pressure Gradients on Turbulent Boundary Layers at Supersonic Speeds. FFA Report 47, Stockholm, Sweden (1953)

    Google Scholar 

  21. Needham, D.A.: Laminar Separation in Hypersonic Flow. Doctoral thesis, University London, U.K (1965)

    Google Scholar 

  22. Korkegi, R.H.: Comparison of Shock-Induced Two- and Three-Dimensional Incipient Turbulent Separation. AIAA J. 13(4), 534–535 (1975)

    Article  Google Scholar 

  23. Neumann, R.D.: Defining the Aerothermodynamic Methodology. In: Bertin, J.J., Glowinski, R., Periaux, J. (eds.) Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 125–204. Birkhäuser, Boston (1989)

    Google Scholar 

  24. Elfstrom, G.M.: Turbulent Hypersonic Flow at a Wedge-Compression Corner. J. of Fluid Mechanics 53, Part 1, 113–127 (1972)

    Article  Google Scholar 

  25. Edney, B.: Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock. FFA Rep. 115 (1968)

    Google Scholar 

  26. Coratekin, T., van Keuk, J., Ballmann, J.: On the Performance of Upwind Schemes and Turbulence Models in Hypersonic Flows. AIAA J. 42(5), 945–957 (2004)

    Article  Google Scholar 

  27. Coleman, G.T., Stollery, J.L.: Heat Transfer from Hypersonic Turbulent Flow at a Wedge Compression Corner. J. Fluid Mechanics 56, 741–752 (1972)

    Article  Google Scholar 

  28. Holden, M.S., Moselle, J.R.: Theoretical and Experimental Studies for the Shock Wave-Boundary Layer Interaction on Compression Surfaces in Hypersonic Flow. ARL 70-0002, Aerospace Research Laboratories, Wright-Patterson AFB, Ohio (1970)

    Google Scholar 

  29. Simeonides, G., Haase, W.: Experimental and Computational Investigations of Hypersonic Flow About Compression Ramps. J. Fluid Mechanics 283, 17–42 (1995)

    Article  Google Scholar 

  30. Reisinger, D., Müller, J., Olejak, D., Staudacher, W.: Effect of Mach Number and Reynolds Number on Flap Efficiencies in the Supersonic Regime. In: Proc. 85th Semi-Annual STA Meeting, Atlanta, GA (1996)

    Google Scholar 

  31. Weilmuenster, K.J., Gnoffo, P.A., Greene, F.A.: Navier-Stokes Simulations of Orbiter Aerodynamic Characteristics. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 447–501 (1995)

    Google Scholar 

  32. Thorwald, B.: Personal communication (2006)

    Google Scholar 

  33. Hirschel, E.H.: Heat Loads as Key Problem of Hypersonic Flight. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW) 16(6), 349–356 (1992)

    Google Scholar 

  34. Bushnell, D.M., Weinstein, L.M.: Correlation of Peak Heating for Reattachment of Separated Flow. J. Spacecraft and Rockets 5, 1111–1112 (196 Radiation Cooled8)

    Google Scholar 

  35. Celic, A., Hirschel, E.H.: Comparison of Eddy-Viscosity Turbulence Models in Flows with Adverse Pressure Gradient. AIAA J. 44(10), 2156–2169 (2006)

    Article  Google Scholar 

  36. Zeiss, W.: Modelling of Hot, Radiation Cooled Surfaces. TET-DASA-21-TN-2402, Dasa, München/Ottobrunn, Germany (1999)

    Google Scholar 

  37. Behr, R.: Hot, Radiation Cooled Surfaces. TET-DASA-21-TN-2410, Dasa, München/Ottobrunn, Germany (2002)

    Google Scholar 

  38. Weiland, C., Longo, J.M.A., Gülhan, A., Decker, K.: Aerothermodynamics for Reusable Launch Systems. Aerospace Science and Technology 8, 101–110 (2004)

    Article  Google Scholar 

  39. Görtler, H.: Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Neue Folge, Fachgruppe 1, Bd. 2, pp. 1–26 (1940)

    Google Scholar 

  40. Ginoux, J.J.: Streamwise Vortices in Reattaching High-Speed Flows: A Suggested Approach. AIAA J. 9(4), 759–760 (1971)

    Article  Google Scholar 

  41. Lüdecke, H., Radespiel, R., Schülein, E.: Simulation of Streamwise Vortices at the Flaps of Re-Entry Vehicles. Aerospace Science and Technology 8, 703–714 (2004)

    Article  Google Scholar 

  42. Lüdecke, H.: Computation of Görtler Vortices in Separated Hypersonic Flows. In: Satofuka, N. (ed.) Computational Fluid Dynamics 2000, pp. 171–176. Springer, Heidelberg (2001)

    Google Scholar 

  43. Gülhan, A.: Investigation of Gap Heating on a Flap Model in the Arc Heated Facility L3K. TET-DLR-21-TN-3101, DLR/Köln-Porz, Germany (1999)

    Google Scholar 

  44. Behr, R., Görgen, J.: CFD Analysis of Gap Flow Phenomena. TET-DASA-21-TN-2403, Dasa München/Ottobrunn, Germany (2000)

    Google Scholar 

  45. Mack, A., Schäfer, R., Gülhan, A., Esser, B.: Flowfield Topology Changes Due to Fluid-Structure Interaction in Hypersonic Flow Using ANSYS and TAU. In: Breitsamter, C., Laschka, B., Heinemann, H.-J., Hilbig, R. (eds.) New Results in Numerical and Experimental Fluid Mechanics IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 87, pp. 196–203. Springer, Heidelberg (2004)

    Google Scholar 

  46. Scallion, W.I.: Space Shuttle Reaction Control System – Flow Field Interactions During Entry. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 345–370 (1995)

    Google Scholar 

  47. Spais, F.W., Cassel, L.A.: Aerodynamic Interference Induced by Reaction Controls. AGARD-AG-173 (1973)

    Google Scholar 

  48. Monta, W.J., Rausch, J.R.: Effects of Reaction Control System Jet-Flow Field Interactions on a 0.015 Scale Model Space Shuttle Orbiter Aerodynamic Characteristics. NASA-CR-134074 (1973)

    Google Scholar 

  49. Zeiss, W.: Jet/Airflow Interaction. TET-DASA-21-TN-2409, Dasa, München/Ottobrunn, Germany (2002)

    Google Scholar 

  50. Zeiss, W., Behr, R.: Vortical Type Flow with Respect to Jet-External Airflow Interaction. In: Breitsamter, C., Laschka, B., Heinemann, H.-J., Hilbig, R. (eds.) New Results in Numerical and Experimental Fluid Mechanics IV. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 87, pp. 188–195. Springer, Heidelberg (2004)

    Google Scholar 

  51. Weiland, C.: Typical Vortex Phenomena in Flow Fields Past Space Vehicles. In: Blackmore, D., Krause, E., Tung, C. (eds.) Vortex Dominated Flows, pp. 251–269. World Scientific Publishing, Singapore (2005)

    Google Scholar 

  52. Wang, K.C.: Separating Patterns of Boundary Layer Over an Inclined Body of Revolution. AIAA Journal 10, 1044–1050 (1972)

    Article  Google Scholar 

  53. Allen, M.F., Romere, P.O.: Space Shuttle Aerodynamics Flight Test Program. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 281–298 (1995)

    Google Scholar 

  54. Romere, P.O.: Orbiter (Pre STS-1) Aerodynamic Design Data Book Development and Methodology. In: Throckmorton, D.A. (ed.) Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 249–280 (1995)

    Google Scholar 

  55. Hauck, H.: Leitkonzept SÄNGER – Referenz-Daten-Buch. Issue 1, Revision 2, Dasa, München/Ottobrunn, Germany (1993)

    Google Scholar 

  56. Edwards, C.L.W., Small, W.J., Weidner, J.P.: Studies of Scramjet/Air-frame Integration Techniques for Hypersonic Aircraft. AIAA-Paper 75-58 (1975)

    Google Scholar 

  57. Kafer, G.C.: Space Shuttle Entry/Landing Flight Control Design Description. AIAA-Paper 82-1601 (1982)

    Google Scholar 

  58. Herrmann, U., Radespiel, R., Longo, J.M.A.: Critical Flow Phenomena on the Winglet of Winged Reentry Vehicles. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW) 19, 309–319 (1995)

    Google Scholar 

  59. Perrier, P.C.: Concepts of Hypersonic Aircraft. In: Bertin, J.J., Glowinski, R., Periaux, J. (eds.) Hypersonics. Defining the Hypersonic Environment, vol. 1, pp. 40–71. Birkhäuser, Boston (1989)

    Google Scholar 

  60. East, R.A., Hutt, G.A.: Vehicle Geometry Effects on Hypersonic Stability and Control. In: Proc. Symposium on Fluid Dynamics and Space, VKI, Rhode Saint Genese, Belgium (1986)

    Google Scholar 

  61. Hirschel, E.H.: Thermal Surface Effects in Aerothermodynamics. In: Proc. 3rd European Symposium on Aerothermodynamics for Space Vehicles, Noordwijk, The Netherlands, ESA SP-426, pp. 17–31 (1999)

    Google Scholar 

  62. Marvin, J.G.: A CFD Validation Roadmap for Hypersonic Flows. AGARD CP-514, pp. 17-1–17-16 (1992)

    Google Scholar 

  63. Esser, B., Gülhan, A.: Thermal Fluid-Structure Interaction in Different Atmospheres. In: Proc. 5th European Workshop on Thermal Protection Systems and Hot Structures, Noordwijk, The Netherlands, ESA SP-631 (2006)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). Stabilization, Trim, and Control Devices. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics