Skip to main content

The γeff Approach and Approximate Relations for the Determination of Aerothermodynamic Parameters

  • Chapter
Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles

Abstract

In this book, we employ approximate relations for the determination of aerothermodynamic data. These are used in order to give quantitative information and to illustrate phenomena. In order to be sufficiently self-consistent, we provide these relations as well as others here. Derived are first elements of the RHPM+ flyer and the γeff approach together with the bow shock total pressure loss. Some γeff results in the large Mach number limit are given. Then the used or referred-to relations for the estimation of transport properties are provided, and finally formulas for stagnation point heating and flat surface boundary layer parameters.References are provided in all instances. For more general and detailed information the reader is referred to [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschel, E.H.: Basics of Aerothermodynamics. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, vol. 204. Springer, Heidelberg (2004)

    Google Scholar 

  2. Adams, J.C., Martindale, W.R., Mayne, A.W., Marchand, E.O.: Real Gas Scale Effects on Hypersonic Laminar Boundary-layer Parameters Including Effects of Entropy-Layer Swallowing. AIAA-Paper 76-358 (1976)

    Google Scholar 

  3. Schwane, R., Muylaert, J.: Design of the Validation Experiment Hyperboloid-Flare. ESA Doc. YPA/1256/RS, ESTEC (1992)

    Google Scholar 

  4. Wüthrich, S., Sawley, M.L., Perruchoud, G.: The Coupled Euler/ Boundary-Layer Method as a Design Tool for Hypersonic Re-Entry Vehicles. Zeitschrift für Flugwissenschaften und Weltraumforschung (ZFW) 20(3), 137–144 (1996)

    Google Scholar 

  5. Brauckmann, G.J., Paulson Jr., J.W., Weilmuenster, K.J.: Experimental and Computational Analysis of Shuttle Orbiter Hypersonic Trim Anomaly. Journal of Spacecraft and Rockets 32(5), 758–764 (1995)

    Article  Google Scholar 

  6. Ames Research Staff. Equations, Tables, and Charts for Compressible Flow. NACA R-1135 (1953)

    Google Scholar 

  7. Vincenti, W.G., Kruger, C.H.: Introduction to Physical Gas Dynamics. John Wiley, New York (1965); Reprint edition, Krieger Publishing Comp., Melbourne, Fl. (1975)

    Google Scholar 

  8. Paulson Jr., J.W., Brauckmann, G.J.: Recent Ground-Facility Simulations of Space Shuttle Orbiter Aerodynamics. In: Throckmorton, D. A. (ed.), Orbiter Experiments (OEX) Aerothermodynamics Symposium. NASA CP-3248, Part 1, pp. 411–445 (1995)

    Google Scholar 

  9. Van Driest, E.R.: On Skin Friction and Heat Transfer Near the Stagnation Point. NACA Report, AL-2267 (1956)

    Google Scholar 

  10. Lees, L.: Laminar Heat Transfer over Blunt-Nosed Bodies at Hypersonic Flight Speeds. Jet Propulsion 26(4), 259–269 (1956)

    Google Scholar 

  11. Bertin, J.J.: The Effect of Protuberances, Cavities, and Angle of Attack on the Wind Tunnel Pressure and Heat Transfer Distribution for the Apollo Command Module. NASA TM X-1243 (1966)

    Google Scholar 

  12. Fay, J.A., Riddell, F.R.: Theory of Stagnation Point Heat Transfer in Dissociated Air. Journal of Aeronautical Sciences 25(2), 73–85 (1958)

    MathSciNet  Google Scholar 

  13. Cohen, N.B.: Boundary Layer Similar Solutions and Correlation Equations for Laminar Heat Transfer Distribution in Equilibrium Air at Velocities Up to 41,100 Feet Per Second. NASA TR R-118 (1961)

    Google Scholar 

  14. Zoby, E.V., Moss, J.N., Sutton, K.: Approximate Convective Heating Equations for Hypersonic Flows. Journal of Spacecraft 18(1) (1981)

    Google Scholar 

  15. Detra, R.W., Kemp, N.H., Riddell, F.R.: Addendum to Heat Transfer to Satellite Vehicles Reentering the Atmosphere. Jet Propulsion 27(12), 1256–1257 (1957)

    Google Scholar 

  16. Riley, C.J., DeJearnette, F.R.: Engineering Aerodynamic Heating Method for Hypersonic Flow. Journal of Spacecraft and Rockets 29(3) (1992)

    Google Scholar 

  17. Rubesin, M.W., Johnson, H.A.: A Critical Review of Skin Friction and Heat Transfer Solutions of the Laminar Boundary Layer of a Flat Plate. Trans. ASME 71, 385–388 (1949)

    MathSciNet  Google Scholar 

  18. Eckert, E.R.G.: Engineering Relations of Friction and Heat Transfer to Surfaces in High-Velocity Flow. J. Aeronautical Sciences 22(8), 585–587 (1955)

    MATH  Google Scholar 

  19. Simeonides, G., Walpot, L.M.G., Netterfield, M., Tumino, G.: Evaluation of Engineering Heat Transfer Prediction Methods in High Enthalpy Flow Conditions. AIAA-Paper 96-1860 (1996)

    Google Scholar 

  20. Simeonides, G.: Generalized Reference-Enthalpy Formulation and Simulation of Viscous Effects in Hypersonic Flow. Shock Waves 8(3), 161–172 (1998)

    Article  MATH  Google Scholar 

  21. Simeonides, G.: Hypersonic Shock Wave Boundary Layer Interactions over Compression Corners. Doctoral Thesis, University of Bristol, U.K (1992)

    Google Scholar 

  22. Hayes, J.R., Neumann, R.D.: Introduction to the Aerodynamic Heating Analysis of Supersonic Missiles. In: Mendenhall, M. R. (ed.), Tactical Missile Aerodynamics: Prediction Methodology. Progress in Astronautics and Aeronautics, AIAA, Reston, Va, pp. 63–110 (1992)

    Google Scholar 

  23. Streit, T., Martin, S., Eggers, T.: Approximate Heat Transfer Methods for Hypersonic Flow in Comparison with Results Provided by Numerical Navier-Stokes Solutions. DLR FB 94-36 (1994)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Weiland, C. (2009). The γeff Approach and Approximate Relations for the Determination of Aerothermodynamic Parameters. In: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89974-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89974-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89973-0

  • Online ISBN: 978-3-540-89974-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics