Skip to main content

Detecting Gene Regulatory Networks from Microarray Data Using Fuzzy Logic

  • Chapter
Book cover Fuzzy Systems in Bioinformatics and Computational Biology

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 242))

Summary

With the arrival of high-throughput genomic data, biologists now have the ability to investigate the expression of genetic transcripts on a genome-wide scale. With this advancement, it is important to consider the regulation of gene expression in the context of a system, including the discovery of any genetic interactions that contribute to regulation. Genetic networks provide a concise representation of the interaction between multiple genes at the system level, giving investigators a broader view of the cellular state compared to a singular declaration of whether a gene is over/under expressed. Many methods currently exist to infer gene regulatory networks, including discrete models (Boolean networks, Bayesian networks), continuous models (weight matrices, differential equations models), and fuzzy logic models. The attractive feature of the fuzzy logic model is that it allows for a simplified rule structure, since observations are categorized, but retains information in the original data by allowing partial membership in multiple categories. The fuzzy logic model is flexible, and can be adapted to a variety of regulatory models and inferential rule sets. In this work, we review several recent advances in fuzzy logic methodologies developed for the genetic network reconstruction problem. The goals of the approaches range from whole genome screening of microarray data for small regulatory units, to detailed reconstruction of the iteractions between genes in a particular pathway. We apply the methods to real microarray data concerning the yeast cell cycle and simulated data concerning the Raf signaling pathway, and compare results with other well-known algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In: Pacific Symposium on Biocomputing, vol. 99(4), pp. 17–28 (1999)

    Google Scholar 

  2. Azuaje, F.: A computational neural approach to support the discovery of gene function and classes of cancer. IEEE Trans. Biomed. Eng. 48(3), 332–339 (2001)

    Article  Google Scholar 

  3. Berggard, T., Linse, S., James, P.: Methods for the detection and analysis of protein-protein interactions. Proteomics 7(16), 2833–2842 (2007)

    Article  Google Scholar 

  4. Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2), 185–193 (2003)

    Article  Google Scholar 

  5. Bork, P., Copley, R.: The draft sequences. filling in the gaps. Nature 409, 818–820 (2001)

    Article  Google Scholar 

  6. Brock, G.N.: FPRNET: Fuzzy logic, probability, and regression models for network reconstruction, Version 1.0 (2008)

    Google Scholar 

  7. Brock, G.N., Beavis, W.D., Kubatko, L.S.: Fuzzy logic and related methods as a screening tool for detecting gene regulatory networks, Information Fusion (in press)

    Google Scholar 

  8. Brock, G.N., Shaffer, J.R., Blakesley, R.E., Lotz, M.J., Tseng, G.C.: Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinformatics 9, 12 (2008)

    Article  Google Scholar 

  9. Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Pacific Symposium on Biocomputing, pp. 418–29 (2000)

    Google Scholar 

  10. Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., Kohane, I.S.: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Science, USA 97(22), 12182–12186 (2000)

    Article  Google Scholar 

  11. Chaves, M., Sontag, E.D., Albert, R.: Methods of robustness analysis for boolean models of gene control networks. Systems Biology (Stevenage) 153(4), 154–167 (2006)

    Google Scholar 

  12. Chen, C.F., Feng, X., Szeto, J.: Identification of critical genes in microarray experiments by a neuro-fuzzy approach. Comput. Biol. Chem. 30(5), 372–381 (2006)

    Article  MATH  Google Scholar 

  13. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. In: Pacific Symposium on Biocomputing, vol. 99(4), pp. 29–40 (1999)

    Google Scholar 

  14. Cho, R.J., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

  15. Combs, W.E., Andrews, J.E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy Systems 6(1), 1–11 (1998)

    Article  Google Scholar 

  16. Datta, S., Sokhansanj, B.A.: Accelerated search for biomolecular network models to interpret high-throughput experimental data. BMC Bioinformatics 8, 258 (2007)

    Article  Google Scholar 

  17. D’Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mRNA expression levels during CNS development and injury. In: Pacific Symposium on Biocomputing, vol. 99(4), pp. 41–52 (1999)

    Google Scholar 

  18. Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistical Sinica 12(1), 111–139 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  20. Friedman, N., Koller, D.: Being Bayesian about network structure. Machine Learning 50, 95–126 (2003)

    Article  MATH  Google Scholar 

  21. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  22. Futschik, M.E., Chaurasia, G., Herzel, H.: Comparison of human protein-protein interaction maps. Bioinformatics 23(5), 605–611 (2007)

    Article  Google Scholar 

  23. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y.H., Zhang, J.: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 5, R80 (2004)

    Article  Google Scholar 

  24. Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A.: The KEGG databases at genomenet. Nucleic Acids Res 30(1), 42–46 (2002)

    Article  Google Scholar 

  25. Kerr, M.K., Churchill, G.A.: Experimental design for gene expression microarrays. Biostatistics 2, 183–202 (2001)

    Article  MATH  Google Scholar 

  26. Kim, S., Imoto, S., Miyano, S.: Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75(1-3), 57–65 (2004)

    Article  Google Scholar 

  27. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings in Bioinformatics 4, 228–235 (2003)

    Article  Google Scholar 

  28. Latchman, D.S.: Eukaryotic transcription factors, 4th edn. Academic Press, London (2003)

    Google Scholar 

  29. Lee, C.H., Teng, C.C.: Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Transactions on Fuzzy Systems 8(4), 349–366 (2000)

    Article  Google Scholar 

  30. Lee, M.L., Bulyk, M.L., Whitmore, G.A., Church, G.M.: A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays. Biometrics 58, 981–988 (2002)

    Article  MathSciNet  Google Scholar 

  31. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing, vol. 98(3), pp. 18–29 (1998)

    Google Scholar 

  32. Linden, R., Bhaya, A.: Evolving fuzzy rules to model gene expression. Biosystems 88(1-2), 76–91 (2007)

    Article  Google Scholar 

  33. Liu, T.Y., Lin, C.W., Falcon, S., Zhang, J., MacDonald, J.W.: Yeast: A data package containing annotation data for yeast, R package version 2.0.1 (2008)

    Google Scholar 

  34. Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers 26(12), 1182–1191 (1977)

    Article  MATH  Google Scholar 

  35. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  36. Maraziotis, I.A., Dragomir, A., Bezerianos, A.: Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks. IET Syst. Biol. 1(1), 41–50 (2007)

    Article  Google Scholar 

  37. Mastorocostas, P.A., Theocharis, J.B.: A recurrent fuzzy-neural model for dynamic system identification. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 32(2), 176–190 (2002)

    Article  Google Scholar 

  38. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  39. Pihur, V., Datta, S., Datta, S.: Reconstruction of genetic association networks from microarray data: a partial least squares approach. Bioinformatics 24(4), 561–568 (2008)

    Article  Google Scholar 

  40. Ping, X., Brock, G.N., Parrish, R.S.: Modified linear discriminant analysis approaches for classification of high-dimensional microarray data. Computational Statistics and Data Analysis (in press)

    Google Scholar 

  41. Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J., Bell, S.P., Young, R.A.: Genome-wide location and function of dna binding proteins. Science 290(5500), 2306–2309 (2000)

    Article  Google Scholar 

  42. Ressom, H., Reynolds, R., Varghese, R.S.: Increasing the efficiency of fuzzy logic-based gene expression data analysis. Physiol Genomics 13(2), 107–117 (2003)

    Google Scholar 

  43. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  44. Schäfer, J., Strimmer, K.: An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6), 754–764 (2005)

    Article  Google Scholar 

  45. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology 4, Article32 (2005)

    Google Scholar 

  46. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nat Genet 31(1), 64–68 (2002)

    Article  Google Scholar 

  47. Sokhansanj, B.A., Fitch, J.P., Quong, J.N., Quong, A.A.: Linear fuzzy gene network models obtained from microarray data by exhaustive search. BMC Bioinformatics 5, 108 (2004)

    Article  Google Scholar 

  48. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9(12), 3273–3297 (1998)

    Google Scholar 

  49. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1), 116–132 (1985)

    MATH  Google Scholar 

  50. Tsukamoto, Y.: An approach to fuzzy reasoning methods. Advances in Fuzzy Set Theory and Applications, 137–149 (1979)

    Google Scholar 

  51. van Someren, E.P., Wessels, L.F., Backer, E., Reinders, M.J.: Genetic network modeling. Pharmacogenomics 3, 507–525 (2002)

    Article  Google Scholar 

  52. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  53. Weaver, D.C., Workman, C.T., Stormo, G.D.: Modeling regulatory networks with weight matrices. In: Pacific Symposium on Biocomputing, vol. 99(4), pp. 112–123 (1999)

    Google Scholar 

  54. Werhli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative evalution of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models, and Bayesian networks. Bioinformatics 22, 2523–2531 (2006)

    Article  Google Scholar 

  55. Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge, Statistical Applications in Genetics and Molecular Biology 6, Article15 (2007)

    Google Scholar 

  56. Wolfsberg, T., McEntyre, J., Schuler, G.: Guide to the draft human genome. Nature 409, 824–826 (2001)

    Article  Google Scholar 

  57. Woolf, P.J., Wang, Y.: A fuzzy logic approach to analyzing gene expression data. Physiological Genomics 3, 9–15 (2000)

    Google Scholar 

  58. Xing, B., van der Laan, M.J.: A causal inference approach for constructing transcriptional regulatory networks. Bioinformatics 21(21), 4007–4013 (2005)

    Article  Google Scholar 

  59. Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21(1), 71–79 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brock, G.N., Pihur, V., Kubatko, L. (2009). Detecting Gene Regulatory Networks from Microarray Data Using Fuzzy Logic. In: Jin, Y., Wang, L. (eds) Fuzzy Systems in Bioinformatics and Computational Biology. Studies in Fuzziness and Soft Computing, vol 242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89968-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89968-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89967-9

  • Online ISBN: 978-3-540-89968-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics