Skip to main content

Task Based Hybrid Closure Grasping Optimization for Autonomous Robot Hand

  • Chapter
Design and Control of Intelligent Robotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 177))

Abstract

Multi-fingered/robot hand is usually equipped with robots in order to perform some tasks, such as, lifting up an object on a table and putting it down on another table; putting an object into a hole; assembling some objects. To perform such tasks, the multi-fingered hand with functions of grasping and manipulating is generally requested for practical use. In order to design the desirable grasping which can perform such a given task, the concept of hybrid closure considering both the contact positions and finger configuration is introduced in this chapter. Based on this concept, the fundamental theory and algorithm on how to make the configuration of fingers and how to determine the contact positions as the fingers are grasping and manipulating an object are described in detail. This chapter consists of 9 sections. In Section 20.1, we first make a brief introduction of the researches on grasp analysis and performance of robot fingers. Further we describe some basic concepts and properties for grasping, especially the importance of the hybrid closure with considering both the contact positions and finger configuration. In Section 20.2, the target system handled in this chapter is shown and the kinematics of the system and the frictional constraint required for maintaining contact is described in detail. Section 20.3 shows the important properties of a hybrid closure grasp. In Section 20.4 the dynamic relationship of the hand system is derived. Section 20.5 describes the concept of required external force set which is important for designing a grasps to perform a given task. Based on the concepts of hybrid closure and required external force set, we define required acceleration and equilibrium-force sets. In Section 20.6, we formulate an optimization problem to design the desirable grasp to perform a given task, using the defined required acceleration and equilibrium-force sets. The algorithm for solving the optimization problem is explained in detail in Section 20.7, and the some numerical examples are demonstrated in Section 20.8. Section 20.9 is conclusion of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bicchi, A., Kumar, V.: Robotic grasping and contact: A review. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 348–353 (2000)

    Google Scholar 

  2. Nguyen, V.: Constructing force-closure grasps. The International Journal of Robotics Research 7(3), 3–16 (1988)

    Article  Google Scholar 

  3. Lakshminarayana, K.: Mechanics of form closure. ASME report (78-DET-32) (1978)

    Google Scholar 

  4. Omata, T.: Fingertip positions of a multifingered hand. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 1562–1567 (1990)

    Google Scholar 

  5. Omata, T.: Finger position computation for 3-dimentional equilibrium grasp. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 216–222 (1993)

    Google Scholar 

  6. Trinkle, J.C., Paul, R.P.: Planning for dexterous manipulation with sliding contacts. The International Journal of Robotics Research 9(3), 24–48 (1990)

    Article  Google Scholar 

  7. Chen, Y., Walker, I.D., Cheatham, J.B.: Grasp synthesis for planar and solid objects. Journal of Robotic Systems 10(2), 153–186 (1993)

    Article  Google Scholar 

  8. Chen, I., Burdick, J.W.: Finding antipodal point grasps on irregularly shaped objects. IEEE Transactions on Robotics and Automation 9(4), 507–512 (1993)

    Article  Google Scholar 

  9. Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J., Merlet, J.: On computing four-finger equiliburium and force-closure grasps of polyhedral objects. The International Journal of Robotics Research 16(1), 11–35 (1997)

    Article  Google Scholar 

  10. Ding, D., Liu, Y., Wang, M.Y.: Automatic selection of fixturing surfaces and fixturing points for polyhedral workpieces. IEEE Transactions on Robotics and Automation 17(6), 833–841 (2001)

    Article  Google Scholar 

  11. Markenscoff, X., Papadimitriou, C.H.: Optimum grip of a polygon. The International Journal of Robotics Research 8(2), 17–29 (1989)

    Article  Google Scholar 

  12. Mirtich, B., Canny, J.: Easily computable optimum grasps in 2-d and 3-d. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 739–747 (1994)

    Google Scholar 

  13. Mangialardi, L., Mantriota, G., Trentadue, A.: A three-dimensional criterion for the determination of optimal grip points. Robotics & Computer-integrated Manufacturing 12(2), 157–167 (1996)

    Article  Google Scholar 

  14. Mantriota, G.: Communication on optimal grip points for contact stability. The International Journal of Robotics Research 18(5), 502–513 (1999)

    Google Scholar 

  15. Wang, M.Y., Pelinescu, D.M.: Optimizing fixture layout in a point-set domain. IEEE Transactions on Robotics and Automation 17(3), 312–323 (2001)

    Article  Google Scholar 

  16. Watanabe, T., Yoshikawa, T.: Grasping optimization using a required external force set. IEEE Transactions on Automation Science and Engineering 4(1), 52–66 (2007)

    Article  Google Scholar 

  17. Yoshikawa, T.: Passive and active closures by constraining mechanisms. Transaction of the ASME, Journal of Dynamic Systems, Measurement, and Control 121, 418–424 (1999)

    Article  Google Scholar 

  18. Li, Z., Hsu, P., Sastry, S.: Grasping and coordinated manipulation by a multifingered robot hand. The International Journal of Robotics Research 8(4), 33–50 (1989)

    Article  Google Scholar 

  19. Cole, A.B.A., Hauser, J.E., Sastry, S.S.: Kinematics and control of multifingered hands with rolling contact. IEEE Transactions on Automatic Control 34(4), 398–403 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yokokohji, Y., Sakamoto, M., Yoshikawa, T.: Vision-aided object manipulation by a multifingered hand with soft fingertips. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 1027–1031 (1999)

    Google Scholar 

  21. Cole, A.A., Hsu, P., Sastry, S.S.: Dynamic control of sliding by robot hands for regrasping. IEEE Transactions on Robotics and Automation 8(1), 42–52 (1992)

    Article  Google Scholar 

  22. Zheng, X., Nakashima, R., Yoshikawa, T.: On dynamic control of finger sliding and object motion in manipulation with multifingered hands. IEEE Transactions on Robotics and Automation 16(5), 469–481 (2000)

    Article  Google Scholar 

  23. Harada, K., Kaneko, M., Tsuji, T.: Active force closure for multiple objects. Journal of Robotic Systems 19(3), 133–141 (2002)

    Article  MATH  Google Scholar 

  24. Harada, K., Kaneko, M., Tsuji, T.: Rolling-based manipulation for multiple objects. IEEE Transactions on Robotics and Automation 16(5), 457–468 (2000)

    Article  Google Scholar 

  25. Trinkle, J.C., Paul, R.P.: Planning for dexterous manipulation with sliding contacts. The International Journal of Robotics Research 9(3), 24–48 (1990)

    Article  Google Scholar 

  26. Bicchi, A., Melchiorri, C., Balluchi, D.: On the mobility and manipulability of general multiple limb robots. IEEE Transactions on Robotics and Automation 11(2), 215–228 (1995)

    Article  Google Scholar 

  27. Harada, K., Kaneko, M.: A sufficient condition for manipulation of envelope family. IEEE Transactions on Robotics and Automation 18(4), 597–607 (2002)

    Article  Google Scholar 

  28. Park, J., Chung, W., Kaneko, M.: Active-external enveloping grasps: Dynamical-balance based motion analysis. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1566–1571 (2001)

    Google Scholar 

  29. Omata, T., Nagata, K.: Rigid body analysis of the indeterminate grasp force in power grasp. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 1787–1793 (1996)

    Google Scholar 

  30. Zhang, X.Y., Nakamura, Y., Goda, K., Yoshimoto, K.: Robustness of power grasp. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 2828–2835 (1994)

    Google Scholar 

  31. Mirza, K., Orin, D.E.: General formulation for force distribution in power grasp. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 880–887 (1994)

    Google Scholar 

  32. Zhang, Y., Gruver, W.A.: Definition and force distribution of power grasps. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 1373–1378 (1995)

    Google Scholar 

  33. Yu, Y., Takeuchi, K., Yoshikawa, T.: Optimization of robot hand power grasps. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 3341–3347 (1998)

    Google Scholar 

  34. Omata, T.: Rigid body analysis of power grasps: Bounds of the indeterminate grasp force. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 2203–2209 (2001)

    Google Scholar 

  35. Yoshikawa, T., Watanabe, T., Daito, M.: Optimization of power grasps for multiple objects. In: Proc. of IEEE International Conference on Robotics and Automation, pp. 1786–1791 (2001)

    Google Scholar 

  36. Shapiro, A., Rimon, E., Burdick, J.W.: Passive force closure and its computation in compliant-rigid grasps. In: Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1769–1775 (2001)

    Google Scholar 

  37. Wang, M.Y., Pelinescu, D.M.: Contact force prediction and force closure analysis of a fixtured rigid workpiece with friction. Transactions on ASME, Journal of Manufacturing Science and Engineering 125, 325–332 (2003)

    Article  Google Scholar 

  38. Fukushima, M.: Introduction to Mathematical Programming. Asakura Book Store (1996) (in Japanese)

    Google Scholar 

  39. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., Englewood Cliffs (1982)

    MATH  Google Scholar 

  40. Stocco, L., Salcudean, S.E., Sassani, F.: Fast constrained global minimax optimization of robot parameters. Robotica 16, 595–605 (1999)

    Article  Google Scholar 

  41. Yoshikawa, T.: Foundations of Robotics. MIT Press, Cambridge (1990)

    Google Scholar 

  42. Kerr, J., Roth, B.: Analysis of multifingered hands. The International Journal of Robotics Research 4(4), 3–17 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watanabe, T., Jiang, Z., Yoshikawa, T. (2009). Task Based Hybrid Closure Grasping Optimization for Autonomous Robot Hand. In: Liu, D., Wang, L., Tan, K.C. (eds) Design and Control of Intelligent Robotic Systems. Studies in Computational Intelligence, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89933-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89933-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89932-7

  • Online ISBN: 978-3-540-89933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics