Skip to main content

Evolutionary Terrain-Based Navigation of Autonomous Mobile Robots

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 177))

Abstract

Optimal motion planning is critical for the successful operation of an autonomous mobile robot. Evolutionary approaches are able to provide optimal paths to problems normally intractable for traditional search methods. However, most proposed methods lack the ability to operate in a dynamic environment in real-time, and few address the impact of varying terrain conditions on the optimal path. This evolutionary navigation approach employs a novel chromosome encoding scheme that provides both path and trajectory planning. The terrain conditions are modeled using fuzzy linguistic variables to allow for the imprecision and uncertainty of the terrain data. The method is extensible and robust, allowing the robot navigate in real-time and to adapt to dynamic conditions in the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarzadeh, M.-R., Kumbla, K., Tunsel, E., Jamshidi, M.: Soft computing for autonomous robotic systems. Computers and Electrical Engineering 26, 5–32 (2000)

    Article  Google Scholar 

  2. Bonnafous, D., Lacroix, S., Simeon, T.: Motion generation for a rover on rough tearrains. In: Proceedings of the 2001 IEEE international conference on intelligent robotics and systems. IEEE Press, New York (2001)

    Google Scholar 

  3. Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cuesta, F., Ollero, A.: Intelligent Mobile Robot Navigation. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  5. Davidor, Y.: Genetic algorithms and robotics: a heuristic strategy for optimization. World Scientific, Singapore (1991)

    MATH  Google Scholar 

  6. Davidson, A., Kita, N.: 3D simulation and map-building using active vision for a robot moving on undulating terrain. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. IEEE Press, New York (2001)

    Google Scholar 

  7. deLope, J., Maravall, D.: Integration of reactive utilitarian navigation and topological modeling. In: Zhou, C., Maravall, D., Ruan, D. (eds.) Autonomous Robotics Systems: Soft Computing and Hard Computing Methodologies and Applications, pp. 103–140. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  8. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. IEEE Computer 22, 46–57 (1989)

    Google Scholar 

  9. Fogel, D.B.: Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, New York (2000)

    Google Scholar 

  10. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley/ IEEE Press, Boston/ New York (1989)

    MATH  Google Scholar 

  11. Hait, A., Simeon, T.: Motion planning on rough terrain for an articulated vehicle in presence of uncertainties. In: Proceedings of the 1996 IEEE/RSJ international conference on intelligent robotics and systems. IEEE Press, New York (1996)

    Google Scholar 

  12. Holland, J.H.: Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  13. Hu, X., Vie, C.: Niche genetic algorithm for robot path planning. In: Proceedings of the third international conference on natural (2007)

    Google Scholar 

  14. Iagnemma, K., Dubowsky, S.: Mobile robots in rough terrain. Springer, New York (2004)

    Google Scholar 

  15. Iagnemma, K., Kang, S., Brooks, C., Dubowsky, S.: Multi-sensor terrain estimation for planetary rovers. In: Proceedings of the 8th international symposium on artificial intelligence, robotics, and automation in space. IEEE Press, New York (2003)

    Google Scholar 

  16. Jung, I.-K., Lacroix, S.: High resolution terrain mapping using low altitude aerial stereo imagery. In: Proceedings of the 9th IEEE international conference on computer vision. IEEE Press, New York (2003)

    Google Scholar 

  17. Kelly, A., Stentz, A.: Rough terrain autonomous mobility – part 2: an active vision predictive control approach. Journal of Autonomous Robots 5, 163–198 (1998)

    Article  Google Scholar 

  18. Latombe, J.C.: Robot motion planning. Kluwer, Dordrecht (1991)

    Google Scholar 

  19. Laubach, S., Burdick, J.: An autonomous sensor-based planner for microrovers. In: Proceedings of the 1999 IEEE international conference on robotics and automation. IEEE Press, New York (1999)

    Google Scholar 

  20. Lee, T., Wu, C.: Fuzzy motion planning of mobile robots in unknown environments. Journal of Intelligent and Robotic Systems 37, 177–191 (2003)

    Article  Google Scholar 

  21. Li, Q., Tong, X., Xie, S., Zhang, Y.: Optimum path planning for mobile robots based on a hybrid genetic algorithm. In: Proceedings of the sixth international conference on hybrid intelligent systems. IEEE Press, New York (2006)

    Google Scholar 

  22. Lu, J., Yang, D.: Path planning based on double-layer genetic algorithm. In: Proceedings of the third international conference on natural computation. IEEE Press, New York (2007)

    Google Scholar 

  23. Madjidi, H., Negahdaripour, S., Bandari, E.: Vision-based positioning and terrain mapping by global alignment for UAVs. In: Proceedings of the IEEE conference on advanced video and signal based surveillance. IEEE Press, New York (2003)

    Google Scholar 

  24. Nearchou, A.C.: Adaptive navigation of autonomous vehicles using evolutionary algorithms. Artificial Intelligence in Engineering 13, 159–173 (1999)

    Article  Google Scholar 

  25. Nearchou, A.C.: Path planning of a mobile robot using genetic heuristics. Robotica 16, 575–588 (1998)

    Article  Google Scholar 

  26. Pai, D., Reissel, L.M.: Multiresolution rough terrain motion planning. IEEE Transactions on Robotics and Automation 14, 19–33 (1998)

    Article  Google Scholar 

  27. Peters, J.F., Ahn, T.C., Borkowski, M., Degtyaryov, V., Ramana, S.: Line-crawling robot navigation: a neurocomputing approach. In: Zhou, C., Maravall, D., Ruan, D. (eds.) Autonomous Robotics Systems: Soft Computing and Hard Computing Methodologies and Applications, pp. 141–164. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  28. Pratihar, D.K., Deb, K., Ghosh, A.: A genetic-fuzzy approach for mobile robot navigation among moving obstacles. International Journal of Approximate Reasoning 20, 145–172 (1999)

    Article  MATH  Google Scholar 

  29. Seraji, H., Howard, A.: Behavior based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Transactions on Robotics and Automation 18, 308–321 (2002)

    Article  Google Scholar 

  30. Shibata, T., Fukuda, T.: Intelligent motion planning by genetic algorithm with fuzzy critic. In: Proceedings of the 8th IEEE symposium on intelligent control. IEEE Press, New York (1993)

    Google Scholar 

  31. Shiller, A., Chen, J.: Optimal motion planning of autonomous vehicles in 3-dimensional terrains. In: Proceedings of the 1990 IEEE international conference on robotics and automation. IEEE Press, New York (1990)

    Google Scholar 

  32. Spero, D., Jarvis, R.: Path planning for a mobile robot in a rough terrain environment. In: Proceedings of the 3rd international workshop on robot motion and control. IEEE Press, New York (2002)

    Google Scholar 

  33. Stafylopatis, A., Bleka, K.: Autonomous vehicle navigation using evolutionary reinforcement learning. European Journal of Operational Research 108, 306–318 (1998)

    Article  MATH  Google Scholar 

  34. Sugihara, K., Smith, J.: Genetic algorithms for adaptive motion planning of an autonomous mobile robot. In: Proceedings of the 1997 IEEE international symposium on computational intelligence in robotics and automation. IEEE Press, New York (1997)

    Google Scholar 

  35. Tarokh, M.: Hybrid intelligent path planning for articulated rovers in rough terrain. Fuzzy Sets and Systems 159, 1430–1440 (2008)

    Article  Google Scholar 

  36. Tunstel, E., Howard, A., Huntsberger, T., Trebio-Ollennu, A., Dolan, J.M.: Applied soft computing strategies for autonomous field robotics. In: Zhou, C., Maravall, D., Ruan, D. (eds.) Autonomous Robotics Systems: Soft Computing and Hard Computing Methodologies and Applications. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  37. Urdiales, C., Bandera, A., Perez, E., Poncela, A., Sandoval, F.: Hierarchical planning in a mobile robot for map learning and navigation. In: Zhou, C., Mara-vall, D., Ruan, D. (eds.) Autonomous Robotics Systems: Soft Computing and Hard Computing Methodologies and Applications. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  38. Vadakkepat, P., Lee, T.H., Xin, L.: Evolutionary artificial potential field - applications to mobile robot planning. In: Zhou, C., Maravall, D., Ruan, D. (eds.) Autonomous Robotics Systems: Soft Computing and Hard Computing Meth-odologies and Applications. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  39. Wu, J., Qin, D.-X., Yu, H.-P.: Nonholonomic motion planning of mobile robot with ameliorated genetic algorithm. In: Proceedings of the 2006 international conference on intelligent information hiding and multimedia signal processing. IEEE Press, New York (2006)

    Google Scholar 

  40. Xu, W., Liang, B., Li, C., Qiang, W., Xu, Y., Lee, K.: Non-holonomic path planning of space robot based on genetic algorithm. In: Proceedings of the 2006 IEEE international conference on robotics and biometrics. IEEE Press, New York (2006)

    Google Scholar 

  41. Yahja, Stentz, A., Singh, S., Brumitt, B.: Franed-quadtree path planning for mobile robots operating in sparse environments. In: Proceedings of the 1998 IEEE international conference on robotics and automation, IEEE Press, New York (1998)

    Google Scholar 

  42. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zadeh, L.A.: A theory of approximate reasoning. Machine Intelligence 9, 149–194 (1979)

    Google Scholar 

  44. Zhang, B.-T., Kim, S.-H.: An evolutionary method for active learning of mobile robot path planning. In: Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation. IEEE Press, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fries, T.P. (2009). Evolutionary Terrain-Based Navigation of Autonomous Mobile Robots. In: Liu, D., Wang, L., Tan, K.C. (eds) Design and Control of Intelligent Robotic Systems. Studies in Computational Intelligence, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89933-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89933-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89932-7

  • Online ISBN: 978-3-540-89933-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics