Rough Web Caching

  • Sarina Sulaiman
  • Siti Mariyam Shamsuddin
  • Ajith Abraham
Part of the Studies in Computational Intelligence book series (SCI, volume 174)


The demand for Internet content rose dramatically in recent years. Servers became more and more powerful and the bandwidth of end user connections and backbones grew constantly during the last decade. Nevertheless users often experience poor performance when they access web sites or download files. Reasons for such problems are often performance problems, which occur directly on the servers (e.g. poor performance of server-side applications or during flash crowds) and problems concerning the network infrastructure (e.g. long geographical distances, network overloads, etc.). Web caching and prefetching have been recognized as the effective schemes to alleviate the service bottleneck and to minimize the user access latency and reduce the network traffic. In this chapter, we model the uncertainty in Web caching using the granularity of rough set (RS) and inductive learning. The proposed framework is illustrated using the trace-based experiments from Boston University Web trace data set.


Particle Swarm Optimization Decision Table Proxy Cache Discriminant Index Cache Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walter, J.D., Ahrvind, J.T.: The economic value of rapid response time. Technical Report GE20-0752-0, IBM, White Plains, NY (November 1982)Google Scholar
  2. 2.
    James, T.B.: A theory of productivity in the creative process. IEEE Computer Graphics and Applications 6(5), 25–34 (1986)CrossRefGoogle Scholar
  3. 3.
    Chris, R.: Designing for delay in interactive information retrieval. Interacting with Computers 10, 87–104 (1998)CrossRefGoogle Scholar
  4. 4.
    Judith, R., Alessandro, B., Jenny, P.: A psychological investigation of long retrieval times on the World Wide Web. Interacting with Computers 10, 77–86 (1998)CrossRefGoogle Scholar
  5. 5.
    Nina, B., Anna, B., Allan, K. (2000) Integrating user perceived quality into Web server design. In: Proceedings of the Ninth International World Wide Web Conference, Amsterdam (May 2000)Google Scholar
  6. 6.
    Zona, The economic impacts of unacceptable Web site download speeds. White paper, Zona Research (1999),
  7. 7.
    Lu, J., Ruan, D., Zhang, G.: E-Service Intelligence Methodologies. In: Technologies and Applications. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Davison, B.D.: The Design and Evaluation of Web Prefetching and Caching Techniques. Doctor of Philosophy thesis, Graduate School of New Brunswick Rutgers, The State University of New Jersey, United State (2002)Google Scholar
  9. 9.
    Nagaraj, S.V.: Web Caching and Its Applications. Kluwer Academic Publishers, Dordrecht (2004)zbMATHGoogle Scholar
  10. 10.
    Krishnamurthy, B., Rexford, J.: Web Protocols and Practice: HTTP 1.1, Networking Protocols. Caching and Traffic Measurement. Addison Wesley, Reading (2001)Google Scholar
  11. 11.
    Acharjee, U.: Personalized and Intelligence Web Caching and Prefetching. Master thesis, Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Canada (2006)Google Scholar
  12. 12.
    Garg, A.: Reduction of Latency in the Web Using Prefetching and Caching. Doctor of Philosophy thesis, University of California, Los Angeles, United State (2003)Google Scholar
  13. 13.
    Kroeger, T.M., Long, D.D.E., Mogul, J.C.: Exploring The Bounds of Web Latency Reduction from Caching and Prefetching. In: Proceedings of the USENIX Symposium on Internet Technology and Systems, pp. 13–22 (1997)Google Scholar
  14. 14.
    Davison, B.D.: A Web Caching Primer. IEEE Internet Computing, pp. 38–45 (2001),
  15. 15.
    Wong, K.Y., Yeung, K.H.: Site-Based Approach in Web Caching Design. IEEE Internet Comp. 5(5), 28–34 (2001)CrossRefGoogle Scholar
  16. 16.
    Wong, K.Y.: Web Cache Replacement Policies: A Pragmatic Approach. IEEE Network (January/Feburary 2006)Google Scholar
  17. 17.
    Mohamed, F.: Intelligent Web Caching Architecture. Master thesis, Faculty of Computer Science and Information System, Universiti Teknologi Malaysia, Malaysia (2007)Google Scholar
  18. 18.
    Mohamed, F., Shamsuddin, S.M.: Smart Web Caching with Structured Neural Networks. In: Proc. Of The 2nd National Conf. on Computer Graphics and Multimedia, Selangor, pp. 348–353 (2004)Google Scholar
  19. 19.
    Mohamed, F., Shamsuddin, S.M.: Smart Web Cache Prefetching with MLP Network. In: Proc. Of The 1st IMT-GT Regional Conf. On Mathematics, Statistics and their Applications, pp. 555–567 (2005)Google Scholar
  20. 20.
    Curran, K., Duffy, C.: Understanding and Reducing Web Delays. Int. J. Network Mgmt. 15, 89–102 (2005)CrossRefGoogle Scholar
  21. 21.
    Web Caching, Caching Tutorial for Web Authors (2008),
  22. 22.
    Saiedian, M., Naeem, M.: Understanding and Reducing Web Delays. IEEE Computer Journal 34(12) (December 2001)Google Scholar
  23. 23., Dynamic Caching (2006),
  24. 24.
    Fan, L., Jacobson, Q., Cao, P., Lin, W.: Web prefetching between low-bandwidth clients and proxies: potential and performance. In: Proceedings of the 1999 ACM SIGMETRICS International Conference on Measurement and Modelling of Computer Systems, Atlanta, Georgia, USA, pp. 178–187 (1999)Google Scholar
  25. 25.
    Yang, Q., Zhang, Z.: Model Based Predictive Prefetching. IEEE, 1529-4188/01: 291–295 (2001)Google Scholar
  26. 26.
    Yang, W., Zhang, H.H.: Integrating Web Prefetching and Caching Using Prediction Models. In: Proceedings of the 10th international conference on World Wide Web (2001)Google Scholar
  27. 27.
    Jiang, Z., Kleinrock, L.: Web Prefetching in a Mobile Environment. IEEE Personal Communications, 1070-9916/98: 25–34 (1998a)Google Scholar
  28. 28.
    Jiang, Z., Kleinrock, L.: An Adaptive Network Prefetch Scheme. IEEE Journal on Selected Areas in Communications 16(3), 1–11 (1998b)CrossRefGoogle Scholar
  29. 29.
    Santhanakrishnan, G., Amer, A., Chrysanthis, P.K.: Towards Universal Mobile Caching. In: Proceedings of MobiDE 2005, Baltimore, Maryland, USA, pp. 73–80 (2005)Google Scholar
  30. 30.
    Ari, I., Amer, A., Gramacy, R., Miller, E.L., Brandt, S., Long, D.D.E.: Adaptive Caching using Multiple Experts. In: Proc. of the Workshop on Distributed Data and Structures (2002)Google Scholar
  31. 31.
    Teng, W.-G., Chang, C.-Y., Chen, M.-S.: Integrating Web Caching and Web Prefetching in Client-Side Proxies. IEEE Transaction on Parallel and Distributed Systems 16(5) (May 2005)Google Scholar
  32. 32.
    Kobayashi, H., Yu, S.-Z.: Performance Models of Web Caching and Prefetching for Wireless Internet Access. In: International Conference on Performance Evaluation: Theory, Techniques and Applications (PerETTA 2000) (2000)Google Scholar
  33. 33.
    Markatos, E.P., Chironaki, C.E.: A Top 10 Approach for Prefetching the Web. In: Proc. of INET 1998:Internet Global Summit (1998)Google Scholar
  34. 34.
    Duchamp, D.: Prefetching Hyperlinks. In: Proceedings of the 2nd USENIX Symposium on Internet Technologies & Systems(USITS 1999), Boulder, Colorado, USA (1999)Google Scholar
  35. 35.
    Deshpande, M., Karypis, G.: Selective Markov Models for Predicting Web-Page Accesses. In: Proceedings SIAM International Conference on Data Mining (2001)Google Scholar
  36. 36.
    Song, H., Cao, G.: Cache-Miss-Initiated Prefetch in Mobile Environments. Computer Communications 28(7) (2005)Google Scholar
  37. 37.
    Yin, L., Cao, G.: Adaptive Power-Aware Prefetch in Mobile Networks. IEEE Transactions on Wireless Communication 3(5) (September 2004)Google Scholar
  38. 38.
    Wu, S., Chang, C., Ho, S., Chao, H.: Rule-based intelligent adaptation in mobile information systems. Expert Syst. Appl. 34(2), 1078–1092 (2008)CrossRefGoogle Scholar
  39. 39.
    Komninos, A., Dunlop, M.D.: A calendar based Internet content pre-caching agent for small computing devices. Pers Ubiquit Comput. (2007), DOI 10.1007/s00779-007-0153-4Google Scholar
  40. 40.
    Cao, P., Zhang, J., Beach, K.: Active Cache:Caching Dynamic Contents on The Web. Distributed Systems Engineering 6(1), 43–50 (1999)CrossRefGoogle Scholar
  41. 41.
    Shi, Y., Watson, E., Chen, Y.-S.: Model-Driven Simulation of World-Wide-Web Cache Policies. In: Proceedings of the 1997 Winter Simulation Conference, pp. 1045–1052 (1997)Google Scholar
  42. 42.
    Abrams, M.: WWW:Beyond the Basics (1997),
  43. 43.
    Abrams, M., Standridge, C.R., Abdulla, G., Williams, S., Fox, E.A.: Caching proxies: Limitations and Potentials. In: Proceedings of the 4th International WWW Conference, Boston, MA (December 1995),
  44. 44.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  46. 46.
    Triantaphyllou, E., Felici, G.: Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Massive Computing Series, pp. 359–394. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  47. 47.
  48. 48.
    Wakaki, T., Itakura, H., Tamura, M., Motoda, H., Washio, T.: A Study on Rough Set-Aided Feature Selection for Automatic Web-page Classification. Web Intelligence and Agent Systems: An International Journal 4, 431–441 (2006)Google Scholar
  49. 49.
    Liang, A.H., Maguire, B., Johnson, J.: Rough Set WebCT Learning, pp. 425–436. Springer, Heidelberg (2000)Google Scholar
  50. 50.
    Ngo, C.L., Nguyen, H.S.: A Tolerence Rough Set Approach to Clustering Web Search Results, pp. 515–517. Springer, Heidelberg (2004)Google Scholar
  51. 51.
    Chimphlee, S., Salim, N., Ngadiman, M.S., Chimphlee, W., Srinoy, S.: Rough Sets Clustering and Markov model for Web Access Prediction. In: Proceedings of the Postgraduate Annual Research Seminar, Malaysia, pp. 470–475 (2006)Google Scholar
  52. 52.
    Khasawneh, N., Chan, C.-C.: Web Usage Mining Using Rough Sets. In: Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2005), pp. 580–585 (2005)Google Scholar
  53. 53.
    Pawlak, Z.: Rough Sets, pp. 3–8. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  54. 54.
    Johnson, J., Liu, M.: Rough Sets for Informative Question Answering. In: Proceedings of the International Conference on Computing and Information (ICCI 1998), pp. 53–60 (1996)Google Scholar
  55. 55.
    Liang, A.H., Maguire, B., Johnson, J.: Rough set based webCT learning. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 425–436. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  56. 56.
    Johnson, J.A., Johnson, G.M.: Student Characteristics and Computer Programming Competency: A Correlational Analysis. Journal of Studies in Technical Careers 14, 23–92 (1992)Google Scholar
  57. 57.
    Tsaptsinos, D., Bell, M.G.: Medical Knowledge Mining Using Rough Set Theory,
  58. 58.
    Shan, N., Ziarko, W., Hamilton, H.J., Cercone, N.: Using rough sets as tools for knowledge discovery. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD 1995), pp. 263–268. AAAI Press, Menlo Park (1995)Google Scholar
  59. 59.
    Sulaiman, S., Shamsuddin, S.M., Abraham, A.: An Implementation of Rough Set in Optimizing Mobile Web Caching Performance. In: Tenth International Conference on Computer Modeling and Simulation, UKSiM/EUROSiM 2008, pp. 655–660. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  60. 60.
    Sulaiman, S., Shamsuddin, S.M., Forkan, F., Abraham, A.: Intelligent Web Caching Using Neurocomputing and Particle Swarm Optimization Algorithm. In: Second Asia International Conference on Modeling and Simulation, AMS 2008, pp. 642–647. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  61. 61.
    Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Communications of the ACM 38(11), 89–95 (1995)CrossRefGoogle Scholar
  62. 62.
    Johnson, J., Liu, M.: Rough Sets for Informative Question Answering. In: Proceedings of the International Conference on Computing and Information (ICCI 1998), pp. 53–60 (1996)Google Scholar
  63. 63.
    Wróblewski, J.: Finding minimal reducts using genetic algorithms. In: Proceedings of Second International Joint Conference on Information Science, pp. 186–189 (1995)Google Scholar
  64. 64.
    Sulaiman, N.S.: Generation of Rough Set (RS) Significant Reducts and Rules for Cardiac Dataset Classification. Master thesis, Faculty of Computer Science and Information System, Universiti Teknologi Malaysia, Malaysia (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sarina Sulaiman
    • 1
  • Siti Mariyam Shamsuddin
    • 1
  • Ajith Abraham
    • 2
  1. 1.Soft Computing Research Group, Faculty of Computer Science and Information SystemUniversiti Teknologi MalaysiaJohorMalaysia
  2. 2.Centre for Quantifiable Quality of Service in Communication SystemsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations