Improving the Performance of Tensor Matrix Vector Multiplication in Cumulative Reaction Probability Based Quantum Chemistry Codes

  • Dinesh Kaushik
  • William Gropp
  • Michael Minkoff
  • Barry Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5374)


Cumulative reaction probability (CRP) calculations provide a viable computational approach to estimate reaction rate coefficients. However, in order to give meaningful results these calculations should be done in many dimensions (ten to fifteen). This makes CRP codes memory intensive. For this reason, these codes use iterative methods to solve the linear systems, where a good fraction of the execution time is spent on matrix-vector multiplication. In this paper, we discuss the tensor product form of applying the system operator on a vector. This approach shows much better performance and provides huge savings in memory as compared to the explicit sparse representation of the system matrix.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wyatt, R.E., Zhang, J.Z.H.: Dynamics of molecules and chemical reactions. CRC Press, Boca Raton (1996)Google Scholar
  2. 2.
    Manthe, U., Miller, W.H.: The cumulative reactions probability as eigenvalue problem. J. Chem. Phys., pp. 3411–3419 (1999)Google Scholar
  3. 3.
    Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing 7(3), 856–869 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.F.: Toward realistic performance bounds for implicit CFD codes. In: Keyes, D., Ecer, A., Periaux, J., Satofuka, N., Fox, P. (eds.) Proceedings of Parallel CFD 1999, pp. 233–240. Elsevier, Amsterdam (1999)Google Scholar
  5. 5.
    Toledo, S.: Improving the memory-system performance of sparse-matrix vector multiplication. IBM Journal of Research and Development 41, 711–725 (1997)CrossRefGoogle Scholar
  6. 6.
    Miller, W.H.: Quantum and semiclassical greens functions in chemical reaction dynamics. J. Chem. Soc., Faraday Trans. 93(5), 685–690 (1997)CrossRefGoogle Scholar
  7. 7.
    Temam, O., Jalby, W.: Characterizing the behavior of sparse algorithms on caches. In: Proceedings of Supercomputing 1992, pp. 578–587. IEEE Computer Society, Los Alamitos (1992)Google Scholar
  8. 8.
    White, J., Sadayappan, P.: On improving the performance of sparse matrix-vector multiplication. In: Proceedings of the 4th International Conference on High Performance Computing (HiPC 1997), pp. 578–587. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  9. 9.
    Balay, S., Buschelman, K.R., Gropp, W.D., Kaushik, D.K., Knepley, M.G., McInnes, L.C., Smith, B.F.: PETSc home page (2002),
  10. 10.
    McCalpin, J.D.: STREAM: Sustainable memory bandwidth in high performance computers. Technical report, University of Virginia (1995),
  11. 11.
    Poirier, B.: Efficient preconditioning scheme for block partitioned matrices with structured sparsity. Numerical Linear Algebra with Applications 7, 1–13 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dinesh Kaushik
    • 1
  • William Gropp
    • 2
  • Michael Minkoff
    • 1
  • Barry Smith
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.University of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations