Advertisement

Computing on Encrypted Data

(Extended Abstract)
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5352)

Abstract

Encryption secures our stored data but seems to make it inert. Can we process encrypted data without having to decrypt it first? Answers to this fundamental question give rise to a wide variety of applications. Here, we explore this question in a number of settings, focusing on how interaction and secure hardware can help us compute on encrypted data, and what can be done if we have neither interaction nor secure hardware at our disposal.

Keywords

Secret Data Encrypt Data Homomorphic Encryption Oblivious Transfer Encrypt Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proc. 20th STOC. ACM, New York (1988)Google Scholar
  2. 2.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th STOC [1], pp. 1–10Google Scholar
  4. 4.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–342. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Lipton, D.: Black box fields. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proc. 20th STOC [1], pp. 11–19Google Scholar
  7. 7.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof (atp) security: Theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM (ed.) Proc. 19th STOC, pp. 218–229. ACM, New York (1987); See [10, Chap. 7] for more detailsGoogle Scholar
  12. 12.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Goyal, V., Ishai, Y., Sahai, A., Wadia, A.: Cryptography from tamper-proof hardware, revisited (manuscript, 2008)Google Scholar
  15. 15.
    Goyal, V., Venkatesan, R.: On obfuscation complete oracles (manuscript, 2008) Google Scholar
  16. 16.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC, pp. 433–442. ACM, New York (2008)Google Scholar
  17. 17.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Pallier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  22. 22.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. Foundations of Secure Computation (1978)Google Scholar
  23. 23.
    Sander, T., Young, A., Yung, M.: Non-interactive CryptoComputing for NC 1. In: Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS), New York, NY, USA, October 1999, pp. 554–567. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  24. 24.
    Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–167. IEEE, Los Alamitos (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations