Skip to main content

Optimization of Projections for Parallel-Ray Transmission Tomography Using Genetic Algorithm

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 20))

Abstract

In this work, a Hybrid Continuous Genetic Algorithm (HCGA) based methodology has been used for the optimization of number of projections for parallel-beam transmission tomography. Image quality has been measured using root-mean-squared error, Euclidean error and peak signal-to-noise ratio. The sensitivity of the reconstructed image quality has been analyzed with the number of projections used for the estimation of the inverse Radon transform. The number of projections has resulted in the maximization of image quality while minimizing the radiation hazard involved. The results have been compared with the intensity levels of the original phantom and the image reconstructed by the Filtered Back-Projection (FBP) technique, by using Matlab ® functions radon and iradon. For the 8 × 8 Head and Lung phantoms, HCGA and FBP have resulted in PSNR values of 40.47 & 8.28 dB and 26.38 & 12.98 dB respectively with the optimum number of projections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    Google Scholar 

  2. Mersereau, R.M.: Direct Fourier transform techniques in 3-D image reconstruction. Comput. Biol. Med. 6, 247–258 (1976)

    Article  CAS  PubMed  Google Scholar 

  3. Metropolis, N., Rosenbluth, A.W., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)

    Article  CAS  Google Scholar 

  4. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: The art of scientific computing. Cambridge University Press, New York (2002)

    Google Scholar 

  5. Webb, S.: Optimizing radiation therapy inverse treatment planning using the simulated annealing technique. International Journal of Imaging Systems and Technology 6(1), 71–79 (2005)

    Article  Google Scholar 

  6. Trosset, M.W.: What is simulated annealing? Optimization and Engineering 2, 201–213 (2001)

    Article  Google Scholar 

  7. Murino, V., Trucco, A.: Markov-based methodology for the restoration of underwater acoustic images. International Journal of Imaging Systems and Technology 8(4), 386–395 (1998)

    Article  Google Scholar 

  8. Qureshi, S.A., Mirza, S.M., Arif, M.: Hybrid Simulated Annealing Image Reconstruction for Parallel-Ray Transmission Tomography. Inverse Problems in Science and Engineering (in press, 2008)

    Google Scholar 

  9. Holland, J.H.: Outline for logical theory of adaptive systems. J. ACM 3, 297–314 (1962)

    Article  Google Scholar 

  10. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  11. Pastorino, M., Massa, A., Caorsi, S.: A microwave inverse scattering technique for image reconstruction based on a genetic algorithm. IEEE transactions on instrumentation and measurement 49(3), 573–578 (2000)

    Article  Google Scholar 

  12. Cheng, K.-S., Chen, B.-H., Tong, H.-S.: Electrical Impedance image reconstruction using the genetic algorithm. In: 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, pp. 768–769 (1996)

    Google Scholar 

  13. Franconi, L., Jennison, C.: Comparison of a genetic algorithm and simulated annealing in an application to statistical image reconstruction. Statistics and Computing 7, 193–207 (1997)

    Article  Google Scholar 

  14. Christopher, R.H., Jeffery, A.J., Michael, G.K.: A genetic algorithm for function optimization: A Matlab implementation. Technical Report, Raleigh: NSCU, pp. 1–14 (1995)

    Google Scholar 

  15. Michalewicz, Z.: Genetic algorithms + Data structures = Evolution programs. Springer, New York (1994)

    Book  Google Scholar 

  16. Caorsi, S., Massa, A., Pastrino, M.: A computational technique based on a real-coded genetic algorithm for microwave imaging purposes. IEEE transactions on geoscience and remote sensing 38(4), 1697–1708 (2000)

    Article  Google Scholar 

  17. Qureshi, S.A., Mirza, S.M., Arif, M.: Quality of inverse Radon transform-based image reconstruction using various frequency domain filters in parallel beam transmission tomography. Science International 18(3), 181–186 (2006)

    CAS  Google Scholar 

  18. Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974)

    Google Scholar 

  19. White, D.R., Wambersie, A.: Tissue Substitutes in Radiation Dosimetry and Measurement. Technical Report, International Commission on Radiation Units and Measurements, pp. 1–132 (1999)

    Google Scholar 

  20. Qureshi, S.A., Mirza, S.M., Arif, M.: A Template Based Continuous Genetic Algorithm for Image Reconstruction. In: Proc. of the 11th IEEE INMIC 2007, ISBN: 1-4244-1552-7 (Conference Print Version), IEEE Catalog Number: 07EX2000, Library of Congress: 2007905117, Lahore, pp. 8–13 (2007)

    Google Scholar 

  21. Bessaou, M., Siarry, P.: A genetic algorithm with real-value coding to optimize multimodal continuous functions. Struct. Multidisc. Optim. 23, 63–74 (2001)

    Article  Google Scholar 

  22. Inters, X., Ntziachrostos, V., Culver, J., Yodh, A., Chance, B.: Projection access order in algebraic reconstruction technique for diffuse optical tomography. Physics in Medicine and Biology 47, N1–N10 (2001)

    Article  Google Scholar 

  23. Brankov, J.G., Yang, Y., Wernick, M.N.: Tomographic Image Reconstruction Based on a Content-Adaptive Mesh Model. IEEE Transactions on medical imaging 23(2), 202–212 (2004)

    Article  PubMed  Google Scholar 

  24. Van Daatselaar, A.N., Tyndall, D.A., Verheij, H., van der Stelt, P.F.: Minimum number of basis projections for caries detection with local CT. Dentomaxillofacial Radiology 33, 355–360 (2004)

    Article  PubMed  Google Scholar 

  25. Qureshi, S.A., Mirza, S.M., Arif, M.: Effect of number of projections on inverse Radon transform-based image reconstruction by using filtered back-projection for parallel beam transmission tomography. Science International 19(1), 5–10 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qureshi, S.A., Mirza, S.M., Arif, M. (2008). Optimization of Projections for Parallel-Ray Transmission Tomography Using Genetic Algorithm. In: Hussain, D.M.A., Rajput, A.Q.K., Chowdhry, B.S., Gee, Q. (eds) Wireless Networks, Information Processing and Systems. IMTIC 2008. Communications in Computer and Information Science, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89853-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89853-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89852-8

  • Online ISBN: 978-3-540-89853-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics