Advertisement

Optimization of Projections for Parallel-Ray Transmission Tomography Using Genetic Algorithm

  • Shahzad Ahmad Qureshi
  • Sikander M. Mirza
  • M. Arif
Part of the Communications in Computer and Information Science book series (CCIS, volume 20)

Abstract

In this work, a Hybrid Continuous Genetic Algorithm (HCGA) based methodology has been used for the optimization of number of projections for parallel-beam transmission tomography. Image quality has been measured using root-mean-squared error, Euclidean error and peak signal-to-noise ratio. The sensitivity of the reconstructed image quality has been analyzed with the number of projections used for the estimation of the inverse Radon transform. The number of projections has resulted in the maximization of image quality while minimizing the radiation hazard involved. The results have been compared with the intensity levels of the original phantom and the image reconstructed by the Filtered Back-Projection (FBP) technique, by using Matlab ® functions radon and iradon. For the 8 × 8 Head and Lung phantoms, HCGA and FBP have resulted in PSNR values of 40.47 & 8.28 dB and 26.38 & 12.98 dB respectively with the optimum number of projections.

Keywords

Genetic Algorithm Inverse Radon Transform Filtered Back-Projection Transmission Tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)Google Scholar
  2. 2.
    Mersereau, R.M.: Direct Fourier transform techniques in 3-D image reconstruction. Comput. Biol. Med. 6, 247–258 (1976)CrossRefPubMedGoogle Scholar
  3. 3.
    Metropolis, N., Rosenbluth, A.W., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092 (1953)CrossRefGoogle Scholar
  4. 4.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: The art of scientific computing. Cambridge University Press, New York (2002)Google Scholar
  5. 5.
    Webb, S.: Optimizing radiation therapy inverse treatment planning using the simulated annealing technique. International Journal of Imaging Systems and Technology 6(1), 71–79 (2005)CrossRefGoogle Scholar
  6. 6.
    Trosset, M.W.: What is simulated annealing? Optimization and Engineering 2, 201–213 (2001)CrossRefGoogle Scholar
  7. 7.
    Murino, V., Trucco, A.: Markov-based methodology for the restoration of underwater acoustic images. International Journal of Imaging Systems and Technology 8(4), 386–395 (1998)CrossRefGoogle Scholar
  8. 8.
    Qureshi, S.A., Mirza, S.M., Arif, M.: Hybrid Simulated Annealing Image Reconstruction for Parallel-Ray Transmission Tomography. Inverse Problems in Science and Engineering (in press, 2008)Google Scholar
  9. 9.
    Holland, J.H.: Outline for logical theory of adaptive systems. J. ACM 3, 297–314 (1962)CrossRefGoogle Scholar
  10. 10.
    Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  11. 11.
    Pastorino, M., Massa, A., Caorsi, S.: A microwave inverse scattering technique for image reconstruction based on a genetic algorithm. IEEE transactions on instrumentation and measurement 49(3), 573–578 (2000)CrossRefGoogle Scholar
  12. 12.
    Cheng, K.-S., Chen, B.-H., Tong, H.-S.: Electrical Impedance image reconstruction using the genetic algorithm. In: 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, pp. 768–769 (1996)Google Scholar
  13. 13.
    Franconi, L., Jennison, C.: Comparison of a genetic algorithm and simulated annealing in an application to statistical image reconstruction. Statistics and Computing 7, 193–207 (1997)CrossRefGoogle Scholar
  14. 14.
    Christopher, R.H., Jeffery, A.J., Michael, G.K.: A genetic algorithm for function optimization: A Matlab implementation. Technical Report, Raleigh: NSCU, pp. 1–14 (1995)Google Scholar
  15. 15.
    Michalewicz, Z.: Genetic algorithms + Data structures = Evolution programs. Springer, New York (1994)CrossRefGoogle Scholar
  16. 16.
    Caorsi, S., Massa, A., Pastrino, M.: A computational technique based on a real-coded genetic algorithm for microwave imaging purposes. IEEE transactions on geoscience and remote sensing 38(4), 1697–1708 (2000)CrossRefGoogle Scholar
  17. 17.
    Qureshi, S.A., Mirza, S.M., Arif, M.: Quality of inverse Radon transform-based image reconstruction using various frequency domain filters in parallel beam transmission tomography. Science International 18(3), 181–186 (2006)Google Scholar
  18. 18.
    Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. NS-21, 21–43 (1974)Google Scholar
  19. 19.
    White, D.R., Wambersie, A.: Tissue Substitutes in Radiation Dosimetry and Measurement. Technical Report, International Commission on Radiation Units and Measurements, pp. 1–132 (1999)Google Scholar
  20. 20.
    Qureshi, S.A., Mirza, S.M., Arif, M.: A Template Based Continuous Genetic Algorithm for Image Reconstruction. In: Proc. of the 11th IEEE INMIC 2007, ISBN: 1-4244-1552-7 (Conference Print Version), IEEE Catalog Number: 07EX2000, Library of Congress: 2007905117, Lahore, pp. 8–13 (2007)Google Scholar
  21. 21.
    Bessaou, M., Siarry, P.: A genetic algorithm with real-value coding to optimize multimodal continuous functions. Struct. Multidisc. Optim. 23, 63–74 (2001)CrossRefGoogle Scholar
  22. 22.
    Inters, X., Ntziachrostos, V., Culver, J., Yodh, A., Chance, B.: Projection access order in algebraic reconstruction technique for diffuse optical tomography. Physics in Medicine and Biology 47, N1–N10 (2001)CrossRefGoogle Scholar
  23. 23.
    Brankov, J.G., Yang, Y., Wernick, M.N.: Tomographic Image Reconstruction Based on a Content-Adaptive Mesh Model. IEEE Transactions on medical imaging 23(2), 202–212 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    Van Daatselaar, A.N., Tyndall, D.A., Verheij, H., van der Stelt, P.F.: Minimum number of basis projections for caries detection with local CT. Dentomaxillofacial Radiology 33, 355–360 (2004)CrossRefPubMedGoogle Scholar
  25. 25.
    Qureshi, S.A., Mirza, S.M., Arif, M.: Effect of number of projections on inverse Radon transform-based image reconstruction by using filtered back-projection for parallel beam transmission tomography. Science International 19(1), 5–10 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shahzad Ahmad Qureshi
    • 1
  • Sikander M. Mirza
    • 2
  • M. Arif
    • 3
  1. 1.Department of Computer & Information SciencesPakistan Institute of Engineering & Applied Sciences (PIEAS)IslamabadPakistan
  2. 2.Department of Physics and Applied MathematicsPakistan Institute of Engineering & Applied Sciences (PIEAS)IslamabadPakistan
  3. 3.Department of Electrical EngineeringPakistan Institute of Engineering & Applied Sciences (PIEAS)IslamabadPakistan

Personalised recommendations