Improving ABT Performance by Adding Synchronization Points

  • Ismel Brito
  • Pedro Meseguer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5129)

Abstract

Asynchronous Backtracking (ABT) is a reference algorithm for Distributed CSP (DisCSP). In ABT, agents assign values to their variables and exchange messages asynchronously and concurrently. When an ABT agent sends a backtracking message, it continues working without waiting for an answer. In this paper, we describe a case showing that this strategy may cause some inefficiency. To overcome this, we propose ABThyb, a new algorithm that results from adding synchronization points to ABT. We prove that ABThyb is correct, complete and terminates. We also provide an empirical evaluation of the new algorithm on several benchmarks. Experimental results show that ABThyb outperforms ABT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, A.B.: The hazards of fancy backtracking. In: Proc. of AAAI 1994, pp. 288–293 (1994)Google Scholar
  2. 2.
    Bessiere, C., Brito, I., Maestre, A., Meseguer, P.: The Asynchronous Backtracking without adding links: a new member in the ABT family. Artifical Intelligence 161, 7–24 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dechter, R., Pearl, J.: Network-Based Heuristics for Constraint-Satisfaction Problems. Artificial Intelligence 34, 1–38 (1988)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Fernández, C., Béjar, R., Krishnamachari, B., Gomes, C.: Communication and Computation in Distributed CSP algorithms. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 664–679. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing Performance of Distributed Constraint Processing Algorithms. In: AAMAS Workshop on Distributed Constr. Reas., pp. 86–93 (2002)Google Scholar
  6. 6.
    Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Asynchronous Search with Aggregations. In: Proc. of the 17th AAAI, pp. 917–922 (2000)Google Scholar
  7. 7.
    Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: Distributed Constraint Satisfaction for Formalizing Distributed Problem Solving. In: Proc. of the 12th. DCS, pp. 614–621 (1992)Google Scholar
  8. 8.
    Yokoo, M.: Asynchronous Weak-Commitment Search for Solving distributed Constraint Satisfaction Problems. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 88–102. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: The Distributed Constraint Satisfaction Problem: Formalization and Algorithms. IEEE Trans. Know. and Data Engin. 10, 673–685 (1998)CrossRefGoogle Scholar
  10. 10.
    Yokoo, M., Katsutoshi, H.: Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents and Multi-Agent Systems 3, 185–207 (2000)CrossRefGoogle Scholar
  11. 11.
    Zivan, R., Meisels, A.: Synchronous and Asynchronous Search on DisCSPs. In: Proceedings of EUMAS 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ismel Brito
    • 1
  • Pedro Meseguer
    • 1
  1. 1.IIIA, Institut d’Investigació en Intel.ligència ArtificialCSIC, Consejo Superior de Investigaciones CientíficasBellaterraSpain

Personalised recommendations