Process Mining towards Semantics

  • A. K. Alves de Medeiros
  • W. M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4891)


Process mining techniques target the automatic discovery of information about process models in organizations. The discovery is based on the execution data registered in event logs. Current techniques support a variety of practical analysis, but they are somewhat limited because the labels in the log are not linked to any concepts. Thus, in this chapter we show how the analysis provided by current techniques can be improved by including semantic data in event logs. Our explanation is divided into two main parts. The first part illustrates the power of current process mining techniques by showing how to use the open source process mining tool ProM to answer concrete questions that managers typically have about business processes. The second part utilizes usage scenarios to motivate how process mining techniques could benefit from semantic annotated event logs and defines a concrete semantic log format for ProM. The ProM tool is available at


Business Process Process Mining Process Instance Business Rule Throughput Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    COSA Business Process Management,
  2. 2.
    Extensible Markup Language (XML),
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Semantic Annotations for Web Service Description Language (SA-WSDL),
  8. 8.
    Staffware Process Suite,
  9. 9.
    van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and Verification of Properties: An Approach Based on Temporal Logic. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Systems. MIT Press, Cambridge (2002)Google Scholar
  11. 11.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  12. 12.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  13. 13.
    Bussler, C., Haller, A. (eds.): BPM 2005. LNCS, vol. 3812. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Casati, F., Shan, M.C.: Semantic Analysis of Business Process Executions. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 287–296. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Workflow Management Coalition. WFMC Home Page,
  16. 16.
    Cook, J.E., Du, Z., Liu, C., Wolf, A.L.: Discovering Models of Behavior for Concurrent Workflows. Computers in Industry 53(3), 297–319 (2004)CrossRefGoogle Scholar
  17. 17.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    van Dongen, B.F., van der Aalst, W.M.P.: A Meta Model for Process Mining Data. In: Proceedings of the CAiSE 2005 WORKSHOPS, vol. 2. FEUP (2005)Google Scholar
  19. 19.
    van Dongen, B.F., Alves de Medeiros, A.K., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase Process mining: Aggregating Instance Graphs into EPCs and Petri Nets. In: Proceedings of the Second International Workshop on Applications of Petri Nets to Coordination, Workflow and Business Process Management (PNCWB) (2005)Google Scholar
  21. 21.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H. (eds.): Process-Aware Information Systems: Bridging People and Software Through Process Technology. John Wiley & Sons Inc., Chichester (2005)Google Scholar
  22. 22.
    Greco, G., Guzzo, A., Pontieri, L.: Mining Hierarchies of Models: From Abstract Views to Concrete Specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 32–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Green, P., Rosemann, M.: Business Systems Analysis with Ontologies. Idea Group Publishing (2005)Google Scholar
  24. 24.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Mining Exact Models of Concurrent Workflows  53(3), 321–343 (2004)Google Scholar
  25. 25.
    Gruninger, M., Lee, J.: Special Issue on Ontology applications and design - Introduction. Communications of ACM 45(2), 39–41 (2002)CrossRefGoogle Scholar
  26. 26.
    Haarslev, V., Möller, R.: Racer: A core inference engine for the semantic web. In: Sure, Y., Corcho, Ó. (eds.) EON. CEUR Workshop Proceedings, vol. 87 (2003) CEUR-WS.orgGoogle Scholar
  27. 27.
    Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business Process Management: a Vision Towards Using Semantic Web services for Business Process Management. In: IEEE International Conference on e-Business Engineering (ICEBE 2005), pp. 535–540 (2005)Google Scholar
  28. 28.
    Herbst, J., Karagiannis, D.: Workflow Mining with InWoLvE. Computers in Industry 53(3), 245–264 (2004)CrossRefGoogle Scholar
  29. 29.
    Thao Ly, L., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from event-based data. In: Bussler and Haller [13], pp. 177–190Google Scholar
  30. 30.
    Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  31. 31.
    Pinter, S.S., Golani, M.: Discovering Workflow Models from Activities Lifespans. Computers in Industry 53(3), 283–296 (2004)CrossRefGoogle Scholar
  32. 32.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  33. 33.
    Rozinat, A.: Decision mining in prom. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Rozinat, A., van der Aalst, W.M.P.: Conformance Testing: Measuring the Fit and Appropriateness of Event Logs and Process Models. In: Bussler and Haller [13], pp. 163–176Google Scholar
  35. 35.
    Schimm, G.: Mining Exact Models of Concurrent Workflows. Computers in Industry 53(3), 265–281 (2004)CrossRefGoogle Scholar
  36. 36.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53 (2007)CrossRefGoogle Scholar
  37. 37.
    Thomas, M., Redmond, R., Yoon, V., Singh, R.: A semantic approach to monitor business process. Communications of ACM 48(12), 55–59 (2005)CrossRefGoogle Scholar
  38. 38.
    van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering Social Networks from Event Logs. Computer Supported Cooperative Work 14(6), 549–593 (2005)CrossRefGoogle Scholar
  39. 39.
    Verbeek, H.M.W., van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Interoperability in the ProM Framework. In: Latour, T., Petit, M. (eds.) Proceedings of the CAiSE 2006 Workshops and Doctoral Consortium, pp. 619–630. Presses Universitaires de Namur (June 2006)Google Scholar
  40. 40.
    Wen, L., Wang, J., Sun, J.: Detecting Implicit Dependencies Between Tasks from Event Logs. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 297–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. K. Alves de Medeiros
    • 1
  • W. M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations