A Low Cost Incremental Biometric Fusion Strategy for a Handheld Device

  • Lorene Allano
  • Sonia Garcia-Salicetti
  • Bernadette Dorizzi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)


In this paper, we present some results on multimodality implementation resulting from the VINSI (“Vérification d’Identité Numérique Sécurisée Itinérante” for Secured Mobile Digital Identity Verification) French project. The VINSI handheld terminal allows identity verification in mobile conditions (airport gates) using two biometrics usable in future biometric passports (fingerprint and face). We propose an incremental fusion strategy aiming at improving the global performance of the combined system over each individual recognizer while optimizing the cost resulting from the fusion. Indeed, in this kind of application, time and complexity optimization is essential. To this aim, we split the fingerprint scores’ range into different interest zones, on which we do not apply the same strategy depending on the relative quality of the modalities at hand. Results on a virtual database corresponding to VINSI applicative conditions (Combination of BIOMET fingerprints and FRGCv2 faces) show that this incremental fusion strategy allows the same improvement in performance as global fusion methods while significantly reducing the cost.


Biometrics Fusion Incremental Strategy Face Fingerprint Handheld Device Cost Optimization Multiple Classifiers System 


  1. 1.
    Pudil, P., Novovicoca, J., Blaha, S., Kittler, J.: Multistage Pattern Recognition with Reject Option. In: Proc. 11th IAPR Internat. Conf. on Pattern Recognition, The Hague, pp. 92–95. IEEE Computer Society Press, Los Alamos (1992)Google Scholar
  2. 2.
    Alpaydin, E., Kaynak, C.: Cascading Classifiers. Kybernetika 34(4), 369–374 (1998)zbMATHGoogle Scholar
  3. 3.
    Mandhavanath, S., Govindaraju, V.: Serial Classifier Combination for Handwritten Word Recognition. In: Proceedings of the Third international Conference on Document Analysis and Recognition, August 14 - 15. ICDAR, vol. 2, p. 911. IEEE Computer Society, Washington (1995)CrossRefGoogle Scholar
  4. 4.
    Cordella, L.P., Foggia, P., Sansone, C., Tortorella, F., Vento, M.: A Cascaded Multiple Expert System for Verification. Multiple Classifier Systems, 330–339 (2000)Google Scholar
  5. 5.
    Marcialis, G.L., Roli, F.: Serial Fusion of Fingerprint and Face Matchers. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 151–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Garcia-Salicetti, S., Beumier, C., Chollet, G., Dorizzi, B., Leroux-Les Jardins, J., Lunter, J., Ni, Y., Petrovska-Delacretaz, D.: BIOMET: a Multimodal Person Authentication Database Including Face, Voice, Fingerprint, Hand and Signature Modalities. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 845–853. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    FRGCv2 database,
  8. 8.
    Dorizzi, B., Garcia-Salicetti, S., Allano, L.: Multimodality in Biosecure: Evaluation on Real vs. Virtual Subjects. In: Proc. of ICASSP, Toulouse, France, May 14-19 (2006)Google Scholar
  9. 9.
  10. 10.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  11. 11.
    Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of multibiometrics. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Allano, L., Morris, A.C., Sellahewa, H., Garcia-Salicetti, S., Koreman, J., Jassim, S., LyVan, B., Wu, D., Dorizzi, B.: Non intrusive multi-biometrics on a mobile device: a comparison of fusion techniques. In: Proc of SPIE 2006, conference on Biometric Techniques for Human Identification III, Orlando, Florida, USA, April 17-21 (2006)Google Scholar
  13. 13.
    Reynolds, D.A., Rose, R.C.: Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models. IEEE Transactions on Speech and Audio Processing 3(1) (January 1995)Google Scholar
  14. 14.
    Bolle, R.M., Ratha, N.K., Pankanti, S.: Error Analysis of pattern recognition systems – the subset bootstrap. Computer Vision and Image Understanding 93 (2004)Google Scholar
  15. 15.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982)zbMATHGoogle Scholar
  16. 16.
    Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of Artificial Gummy Fingers on Fingerprint Systems. In: Proceedings of SPIE. Optical Security and Counterfeit Deterrence Techniques IV, vol. 4677 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lorene Allano
    • 1
  • Sonia Garcia-Salicetti
    • 1
  • Bernadette Dorizzi
    • 1
  1. 1.Telecom & Management SudParis – Institut TelecomEvry CedexFrance

Personalised recommendations