In graph comparison, the use of (dis)similarity measurements between graphs is an important topic. In this work, we propose an eigendecomposition based approach for measuring dissimilarities between graphs in the joint eigenspace (JoEig). We will compare our JoEig approach with two other eigendecomposition based methods that compare graphs in different eigenspaces. To calculate the dissimilarity between graphs of different sizes and perform inexact graph comparison, we further develop three different ways to resize the eigenspectra and study their performance in different situations.


  1. 1.
    Caelli, T., Kosinov, S.: An Eigenspace Projection Clustering Method for Inexact Graph Matching. IEEE Trans. Pattern Analysis and Machine Intelligence 26(4), 515–519 (2004)CrossRefGoogle Scholar
  2. 2.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  3. 3.
    Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-Activity Relationshop of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. Correlation with Molecular Orbital Energies and Hydrophobicity, Journal of Medicinal Chemistry 34, 786–797 (1991)Google Scholar
  4. 4.
    He, P.R., Zhang, W.J., Li, Q., Wu, F.X.: A New Method for Detection of Graph Isomorphism Based on the Quadratic Form. Journal of Mechanical Design 125, 640–642 (2003)CrossRefGoogle Scholar
  5. 5.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Umeyama, S.: An Eigendecomposition Approach to Weighted Graph Matching Problems. IEEE Trans. Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia University Image Library (COIL-20),
  8. 8.
    Neuhaus, M., Bunke, H.: Edit Distance-Based Kernel Functions for Structural Pattern Classification. Pattern Recognition 39, 1852–1863 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pekalska, E., Duin, R.P.W.: Dissimilarity Representations Allow for Building Good Classifiers. Pattern Recognition Letters 23(8), 943–956 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Qiu, H.J., Hancock, E.R.: Spectral Simplication of Graphs. In: Proceedings of the 8th European conference on computer vision, Czech Republic, pp. 114–126 (2004)Google Scholar
  11. 11.
    Wilson, R.C., Hancock, E.R., Luo, B.: Pattern Vectors from Algebraic Graph Theory. IEEE Trans. Pattern Analysis and Machine Intelligence 27(7), 1–13 (2005)CrossRefGoogle Scholar
  12. 12.
    Zhao, G.X., Luo, B., Ting, J., Ma, J.X.: Using Eigen-Decomposition Method for Weighted Graph Matching. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC 2007. LNCS, vol. 4681, pp. 1283–1294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    CMU Vision and Autonomous System Center’s Image Database,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Wan-Jui Lee
    • 1
  • Robert P. W. Duin
    • 1
  1. 1.Faculty of Electrical Engineering, Mathematics and Computer SciencesDelft University of TechnologyThe Netherlands

Personalised recommendations