Advertisement

Exploring Margin Maximization for Biometric Score Fusion

  • Claudio Marrocco
  • Maria Teresa Ricamato
  • Francesco Tortorella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)

Abstract

Biometric systems are automated methods based on physical or behavioral characteristics of an individual for determining her/his identity. An important aspect of these systems is the reliability against forgery that is surely improved when using multiple sources of biometric information. In such cases combination rules can be applied to fuse the different scores thus obtaining a multibiometric system.

In this paper we analyze a method based on margin maximization for building a linear combination of biometric scores. The margin is a central concept in machine learning research and several theoretical results exist which show that improving the margin on the training set is beneficial for the generalization error of an ensemble of classifiers. Experiments performed on real biometric data and comparisons with other commonly employed fusion rules show that a combination based on margin maximization is particularly effective with respect to other established fusion methods.

Keywords

multiple classifiers systems multibiometrics margins linear programming 

References

  1. 1.
    Mosek 2005. The MOSEK optimization tools version 5.0. User’s manual and reference. MOSEK ApS, Denmark (2005)Google Scholar
  2. 2.
    Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. Information Theory, IEEE Transactions 44(2), 525–536 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, N.: Margin analysis of the lvq algorithm. In: Thrun, S., Becker, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 462–469. MIT Press, Cambridge (2003)Google Scholar
  5. 5.
    Grove, A.J., Schuurmans, D.: Boosting in the limit: maximizing the margin of learned ensembles. In: AAAI 1998/IAAI 1998: Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial intelligence, Menlo Park, CA, USA, pp. 692–699. American Association for Artificial Intelligence (1998)Google Scholar
  6. 6.
    Jain, A.K., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognition 38(12), 2270–2285 (2005)CrossRefGoogle Scholar
  7. 7.
    Joachims, T.: Making large-scale svm learning practical. In: Schölkopf, et al. (eds.) Advances in Kernel Methods-Support Vector Learning, pp. 169–184. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.K.: Likelihood ratio-based biometric score fusion. Pattern Analysis and Machine Intelligence, IEEE Transactions 30(2), 342–347 (2008)CrossRefGoogle Scholar
  9. 9.
    National Institute of Standards and Technology. Nist biometric scores set - release 1 (2004), http://www.itl.nist.gov/iad/894.03/biometricscores
  10. 10.
    Poh, N., Bengio, S.: Database protocols and tools for evaluating score-level fusion algorithms in biometric authentication. Pattern Recognition 39(2), 223–233 (2006)CrossRefGoogle Scholar
  11. 11.
    Ratsch, G., Onoda, T., Muller, K.-R.: Soft margins for adaboost. Machine Learning 42(3), 287–320 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 26(5), 1651–1686 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: Structural risk minimization over data-dependent hierarchies. Information Theory, IEEE Transactions 44(5), 1926–1940 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Snelick, R., Uludag, U., Mink, A., Indovina, M., Jain, A.K.: Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems. Pattern Analysis and Machine Intelligence, IEEE Transactions 27(3), 450–455 (2005)CrossRefGoogle Scholar
  15. 15.
    Toh, K.-A., Kim, J., Lee, S.: Biometric scores fusion based on total error rate minimization. Pattern Recognition 41(3), 1066–1082 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Vanderbei, R.J.: Linear Programming: Foundations and Extensions, 2nd edn. Springer, Heidelberg (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Vezhnevets, A., Vezhnevets, V.: Modest adaboost - teaching adaboost to generalize better. Graphicon-2005, Novosibirsk Akademgorodok, Russia (2005), http://research.graphicon.ru/machine-learning/gml-adaboost-matlab-toolbox-3.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Claudio Marrocco
    • 1
  • Maria Teresa Ricamato
    • 1
  • Francesco Tortorella
    • 1
  1. 1.DAEIMIUniversità degli Studi di CassinoCassinoItaly

Personalised recommendations