Delaunay tessellation describes a set of arbitrarily distributed points as unique triangular graphs which preserves most local point configuration called a clique regardless of noise addition and partial occlusion. In this paper, this structure is utilised in a matching method and proposed a clique-based Hausdorff Distance (HD) to address point pattern matching problems. Since the proposed distance exploits similarity invariant features extracted from a clique, it is invariant to rotation, translation and scaling. Furthermore, it inherits noise robustness from HD and has partial matching ability because matching performs on local entities. Experimental results show that the proposed method performs better than the existing variants of the general HD.


Point pattern matching Delaunay tessellation Hausdorff distance Similarity invariant distance 


  1. 1.
    Strickland, R.N., Mao, Z.: Computing correspondences in a sequence of non-rigid shapes. Pattern Recognit. 25(9), 901–912 (1992)CrossRefGoogle Scholar
  2. 2.
    Shapiro, L.S., Brady, J.M.: Feature-based correspondence: An eigenvector approach. Image Vision Compt. 10(5), 283–288 (1992)CrossRefGoogle Scholar
  3. 3.
    Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans. Pattern Anal. Machine Intell. 28(4), 643–649 (2006)CrossRefGoogle Scholar
  4. 4.
    Caetano, T.S., Caelli, T., Schuurmans, D., Barone, D.A.C.: Graphical models and point pattern matching. IEEE Trans. Pattern Anal. Machine Intell. 28(10), 1646–1663 (2006)CrossRefGoogle Scholar
  5. 5.
    Saber, E., Xu, Y., Tekalp, A.M.: Partial shape recognition by sub-matrix matching for partial matching guided image labeling. Pattern Recognit. 38(10), 1560–1573 (2005)CrossRefGoogle Scholar
  6. 6.
    Carcassoni, M., Hancock, E.R.: Spectral correspondence for point pattern matching. Pattern Recognit. 36(1), 192–204 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Trans. Pattern Anal. Machine Intell. 26(4), 515–519 (2004)CrossRefGoogle Scholar
  8. 8.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Machine Intell. 15(9), 850–863 (1993)CrossRefGoogle Scholar
  9. 9.
    Jolly, M.P.D., Jain, A.K.: A modified hausdorff distance for object matching. In: Proc. Int. Conf. Pattern Recognition, vol. A, pp. 566–568 (1994)Google Scholar
  10. 10.
    Yi, X., Camps, O.I.: Line-based recognition using a multidimensional Hausdorff distance. IEEE Trans. Pattern Anal. Machine Intell. 21(9), 901–(1999)CrossRefGoogle Scholar
  11. 11.
    Gao, Y., Leung, M.K.H.: Line segment Hausdorff distance on face matching. Pattern Recognit. 35(2), 361–371 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gao, Y., Leung, M.K.H.: Face recognition using line edge map. IEEE Trans. Pattern Anal. Machine Intell. 24(6), 764–779 (2002)CrossRefGoogle Scholar
  13. 13.
    Yu, X., Leung, M.K.H.: Shape recognition using curve segment Hausdorff distance. In: Proc. Int. Conf. Pattern Recognition, vol. 3, pp. 441–444 (2006)Google Scholar
  14. 14.
    Gope, C., Kehtarnavaz, N.: Affine invariant comparison of point-sets using convex hulls and Hausdorff distances. Pattern Recognit. 40(1), 309–320 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Trans. Syst., Man, Cybern. 6(6), 420–433 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Baihua Li, Q.m., Holstein, H.: Similarity K-d tree method for sparse point pattern matching with underlying non-rigidity. Pattern Recognit. 38(12), 2391–2399 (2005)CrossRefGoogle Scholar
  17. 17.
    Finch, A.M., Wilson, R.C., Hancock, E.R.: Matching Delaunay graphs. Pattern Recognit. 30(1), 123–140 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cross, A.D.J., Hancock, E.R.: Graph matching with a dual-step EM algorithm. IEEE Trans. Pattern Anal. Machine Intell. 20(11), 1236–1253 (1998)CrossRefGoogle Scholar
  19. 19.
    Bowyer, A.: Computing Dirichlet tessellations. Comput. J. 24(2), 162–166 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  21. 21.
    Hartley, R., Zisserman, A.: Multiple view geometry, 1st edn. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dongjoe Shin
    • 1
  • Tardi Tjahjadi
    • 1
  1. 1.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations