Advertisement

A Fast Approach to Improve Classification Performance of ECOC Classification Systems

  • Paolo Simeone
  • David M. J. Tax
  • Robert P. W. Duin
  • Francesco Tortorella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)

Abstract

Error correcting output coding is a well known technique to decompose a multi-class classification problem into a group of two-class problems which can be faced by using a combination of binary classifiers. Each of them is trained on a different dichotomy of the classes. The way the set of classes is mapped on this set of dichotomies may essentially influence the obtained performance. In this paper we present a new tool, the k-NN lookup table to optimize this mapping in a fast way and a fast procedure to change the dichotomies in a proper way. Experiments on artificial and public data sets show that the proposed procedure may significantly improve the ECOC performance in multi-class problems.

Keywords

multiple classifiers systems ECOC k-NN  

References

  1. 1.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)zbMATHGoogle Scholar
  2. 2.
    Kong, E.B., Dietterich, T.G.: Error-Correcting Output Coding Corrects Bias and Variance. In: International Conference on Machine Learning, pp. 313–321 (1995)Google Scholar
  3. 3.
    Kong, E.B., Dietterich, T.G.: Probability estimation via error-correcting output coding. In: Int. Conf. of Articial Inteligence and soft computing, Ban, Canada (1997)Google Scholar
  4. 4.
    Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 9–16 (2000)Google Scholar
  5. 5.
    Crammer, K., Singer, Y.: On the Learnability and Design of Output Codes for Multiclass Problems. Machine Learning 47 (2002)Google Scholar
  6. 6.
    Marrocco, C., Simeone, P., Tortorella, F.: Embedding Reject Option in ECOC Through LDPC Codes. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 333–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Pujol, O., Radeva, P., Vitrià, J.: Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. On Pattern Analysis And Machine Intelligence 28(6), 1001–1007 (2006)CrossRefGoogle Scholar
  8. 8.
    Windeatt, T., Ghaderi, R.: Coding and decoding strategies for multi-class learning problems. Information Fusion 4(1), 11–21 (2003)CrossRefGoogle Scholar
  9. 9.
    Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paolo Simeone
    • 1
  • David M. J. Tax
    • 2
  • Robert P. W. Duin
    • 2
  • Francesco Tortorella
    • 1
  1. 1.DAEIMIUniversità degli Studi di CassinoCassino (FR)Italy
  2. 2.Information and Communication Theory GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations