Advertisement

Graph Edit Distance without Correspondence from Continuous-Time Quantum Walks

  • David Emms
  • Richard C. Wilson
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)

Abstract

We consider how continuous-time quantum walks can be used for graph matching. We focus in detail on both exact and inexact graph matching, and consider in depth the problem of measuring graph similarity. We commence by constructing an auxiliary graph, in which the two graph to be matched are co-joined by a layer of indicator nodes (one for each potential correspondence between a pair of nodes). We simulate a continuous time quantum walk in parallel on the two graphs. The layer of connecting indicator nodes in the auxiliary graph allow quantum interference to take place between the two walks. The interference amplitudes on the indicator nodes are determined by differences in the two walks. We show how these interference amplitudes can be used to compute graph edit distances without explicitly determining node correspondences.

References

  1. 1.
    Babai, L., Grigoryev, D.Y., Mount, D.M.: Isomorphism of graphs with bounded eigenvalue multiplicity. In: STOC 1982: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 310–324. ACM Press, New York (1982)CrossRefGoogle Scholar
  2. 2.
    Barrow, H.G., Burstall, R.M.: Subgraph isomorphism, matching relational structures and maximal cliques. Information Processing Letters 4(4), 83–84 (1976)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC), Texas, pp. 48–53. ACM Press, New York (1997)Google Scholar
  4. 4.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: STOC 2003: Proc. 35th ACM symposium on TOC, pp. 59–68. ACM Press, New York (2003)Google Scholar
  5. 5.
    McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Emms, D., Hancock, E.R., Wilson, R.C.: Graph similarity using interfering quantum walks. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 823–831. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Emms, D., Wilson, R.C., Hancock, E.R.: Graph Embedding Using Quantum Commute Times. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 371–382. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Ettinger, M., Høyer, P.: A quantum observable for the graph isomorphism problem (1999)Google Scholar
  9. 9.
    Ettinger, M., Høyer, P.: The hidden subgroup problem and permutation group theory (2004)Google Scholar
  10. 10.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on the Theory of Computation, pp. 212–219. ACM Press, New York (1996)Google Scholar
  11. 11.
    Hopcroft, J.E., Wong, J.K.: A linear time algorithm for isomorphism of planar graphs. In: Proceedings of the 6th Annual ACM Symposium on the Theory of Computing (STOC 1974), pp. 172–184 (1974)Google Scholar
  12. 12.
    Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Computing in Science and Engineering 03(2), 34–43 (2001)CrossRefGoogle Scholar
  13. 13.
    Kempe, J.: Quantum random walks—an introductory overview. Contemporary Physics 44(4), 307–327 (2003)CrossRefGoogle Scholar
  14. 14.
    Köbler, J.: On graph isomorphism for restricted graph classes. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 241–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Miyazaki, T.: The complexity of Mckay’s canonical labeling algorithm (1996)Google Scholar
  16. 16.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Emms
    • 1
  • Richard C. Wilson
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations