Tracking by Hierarchical Representation of Target Structure

  • Nicole M. Artner
  • Salvador B. López Mármol
  • Csaba Beleznai
  • Walter G. Kropatsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)


Tracking of spatially extended targets with variable shape, pose and appearance is a highly challenging task. In this work we propose a novel tracking approach using an incrementally generated part-based description to obtain a specific representation of target structure. The hierarchical part-based representation is learned in a generative manner from a large set of simple local features. The spatial and temporal density of observed part combinations is estimated by performing statistics over temporally aggregated data. Detected stable combinations consisting of multiple simpler parts encompass local, specific structures, which can efficiently guide a spatio-temporal association step of coherently moving image regions, which are part of the same target. The concept of our approach is proved and evaluated in several experiments.


hierarchical representation edge segments spatial statistics temporal statistics tracking 


  1. 1.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, vol. 1, pp. 798–805. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  2. 2.
    Ramanan, D., Forsyth, D.A.: Finding and tracking people from the bottom up. In: CVPR, vol. 2, pp. 467–474. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  3. 3.
    Geman, S., Potter, D., Chi, Z.: Composition systems. Quarterly of Applied Mathematics 60, 707–736 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fidler, S., Leonardis, A.: Towards scalable representations of object categories: Learning a hierarchy of parts. In: CVPR, pp. 1–8. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  5. 5.
    Gao, Q.: Perceptual tracking of edge features. In: ICIP, vol. 1, pp. 958–962 (1994)Google Scholar
  6. 6.
    Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Agarwal, A., Triggs, B.: Hyperfeatures multilevel local coding for visual recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 30–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Crandall, D.J., Huttenlocher, D.P.: Weakly supervised learning of part-based spatial models for visual object recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 16–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bouchard, G., Triggs, B.: Hierarchical part-based visual object categorization. CVPR 1, 710–715 (2005)Google Scholar
  10. 10.
    Ommer, B., Buhmann, J.M.: Compositional object recognition, segmentation, and tracking in video. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 318–333. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Fidler, S., Skočaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. PAMI 28, 337–350 (2006)CrossRefGoogle Scholar
  12. 12.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63, 75–104 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicole M. Artner
    • 1
  • Salvador B. López Mármol
    • 2
  • Csaba Beleznai
    • 1
  • Walter G. Kropatsch
    • 2
  1. 1.Smart Systems DivisionAustrian Research Centers GmbH - ARCViennaAustria
  2. 2.PRIP, Vienna University of TechnologyViennaAustria

Personalised recommendations