Ensemble Combination for Solving the Parameter Selection Problem in Image Segmentation

  • Pakaket Wattuya
  • Xiaoyi Jiang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)


Unsupervised image segmentation is of essential relevance for many computer vision applications and remains a difficult task despite of decades of intensive research. In particular, the parameter selection problem has not received the due attention in the past. Researchers typically claim to have empirically fixed the parameter values or train in advance based on manual ground truth. These approaches are not optimal and lack an adaptive behavior in dealing with a particular image. In this work we adopt the ensemble combination principle to solve the parameter selection problem in image segmentation. It explores the parameter space without the need of ground truth. The experimental results including a comparison with ground truth based training demonstrate the effectiveness of our framework.


Image segmentation parameter selection ensemble combination concept multiple segmentation combination 


  1. 1.
    Abdul-Karim, M.-A., Roysam, B., Dowell-Mesfin, N.M., Jeromin, A., Yuksel, M., Kalyanaraman, S.: Automatic selection of parameters for vessel/neurite segmentation algorithms. IEEE Trans. on Image Processing 14(9), 1338–1350 (2005)CrossRefGoogle Scholar
  2. 2.
    Cingue, L., Cucciara, R., Levialdi, S., Martinez, S., Pignalberi, G.: Optimal range segmentation parameters through genetic algorithms. In: Proc. of 15th Int. Conf. on Pattern Recognition, Barcelona, vol. 1, pp. 474–477 (2000)Google Scholar
  3. 3.
    Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. Journal of Computer Vision, 167–181 (2004)Google Scholar
  4. 4.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  5. 5.
    Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms, and applications. IEEE Trans. Patt. Anal. Mach. Intell. 23(10), 1144–1151 (2001)CrossRefGoogle Scholar
  6. 6.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int. Conf. Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  7. 7.
    Kuncheva, L.I.: Combining Pattern Classifiers. Wiley Interscience, Hoboken (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Min, J., Powell, M., Bowyer, K.W.: Automated performance evaluation of range image segmentation algorithms. IEEE Trans. on SMC – Part B 34(1), 263–271 (2004)Google Scholar
  9. 9.
    Strehl, A., Ghosh, J.: Cluster ensembles – A knowledge reuse framework for combining multiple partitions. J. Machine Learning Research 3, 583–617 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Wattuya, P., Jiang, X.: A class of generalized median contour problem with exact solution. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 109–117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Wattuya, P., Jiang, X., Praßni, S., Rothaus, K.: A random walker based approach to combining multiple segmentations. In: Proc. of 19th Int. Conf. on Pattern Recognition, Florida (2008)Google Scholar
  12. 12.
    Fred, A., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Patt. Anal. Mach. Intell. 27(6), 835–850 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pakaket Wattuya
    • 1
  • Xiaoyi Jiang
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of MünsterGermany

Personalised recommendations