Optimal Solution of the Dichromatic Model for Multispectral Photometric Invariance

  • Cong Phuoc Huynh
  • Antonio Robles-Kelly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)


In this paper, we address the problem of photometric invariance in multispectral imaging making use of an optimisation approach based upon the dichromatic model. In this manner, we can cast the problem of recovering the spectra of the illuminant, the surface reflectance and the shading and specular factors in a structural optimisation setting. Making use of the additional information provided by multispectral imaging and the structure of image patches, we recover the dichromatic parameters of the scene. Thus, we formulate a target cost function combining the dichromatic error and the smoothness priors for surfaces with uniform reflectance. The dichromatic parameters are recovered through minimising this cost function in a coordinate descent manner. To this end, we make use of regular albedo patches in the scene selected automatically. The algorithm is shown to be robust, and since the cost function is convex in nature, the resulting solution is globally optimal. We illustrate the effectiveness of our method for purposes of illuminant spectrum recovery and skin recognition. We also compare our results to a number of alternatives.


  1. 1.
    Nayar, S., Bolle, R.: Reflectance based object recognition. International Journal of Computer Vision 17(3), 219–240 (1996)CrossRefGoogle Scholar
  2. 2.
    Nayar, S.K., Bolle, R.M.: Computing reflectance ratios from an image. Pattern Recognition 26, 1529–1542 (1993)CrossRefGoogle Scholar
  3. 3.
    Dror, R.O., Adelson, E.H., Willsky, A.S.: Recognition of surface reflectance properties from a single image under unknown real-world illumination. In: Proc. of the IEEE Workshop on Identifying Objects Across Variations in Lighting (2001)Google Scholar
  4. 4.
    Horn, B.K.P., Brooks, M.J.: The variational approach to shape from shading. CVGIP 33(2), 174–208 (1986)zbMATHGoogle Scholar
  5. 5.
    Chang, J.Y., Lee, K.M., Lee, S.U.: Shape from shading using graph cuts. In: Proc. of the Int. Conf. on Image Processing, vol. I, pp. 421–424 (2003)Google Scholar
  6. 6.
    Brelstaff, G., Blake, A.: Detecting specular reflection using lambertian constraints. In: Int. Conf. on Comp. Vision, pp. 297–302 (1988)Google Scholar
  7. 7.
    Ragheb, H., Hancock, E.R.: A probabilistic framework for specular shape-from-shading. Pattern Recognition 36(2), 407–427 (2003)CrossRefGoogle Scholar
  8. 8.
    Lin, S., Shum, H.: Separation of diffuse and specular reflection in color images. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. I, pp. 341–346 (2001)Google Scholar
  9. 9.
    Klinker, G., Shafer, S., Kanade, T.: A physical approach to color image understanding. Intl. Journal of Computer Vision 4(1), 7–38 (1990)CrossRefGoogle Scholar
  10. 10.
    Suen, P.H., Healey, G.: Invariant mixture recognition in hyperspectral images. In: Int. Conference on Computer Vision, pp. 262–267 (2001)Google Scholar
  11. 11.
    Angelopoulou, E.: Objective colour from multispectral imaging. In: European Conf. on Computer Vision, pp. 359–374 (2000)Google Scholar
  12. 12.
    Shafer, S.A.: Using color to separate reflection components. Color Research and Applications 10(4), 210–218 (1985)CrossRefGoogle Scholar
  13. 13.
    Finlayson, G.D., Schaefer, G.: Convex and Non-convex Illuminant Constraints for Dichromatic Colour Constancy. CVPR 1, 598–604 (2001)Google Scholar
  14. 14.
    Tominaga, S., Wandell, B.A.: Standard surface-reflectance model and illuminant estimation. Journal of the Optical Society of America A 6, 576–584 (1989)CrossRefGoogle Scholar
  15. 15.
    Marr, D., Hildreth, E.: Theory of edge detection. In: Proceedings of Royal Society, London, vol. B–207, pp. 187–217 (1980)Google Scholar
  16. 16.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  17. 17.
    Klinker, G.J., Shafer, S.A., Kanade, T.: The measurement of highlights in color images. International Journal of Computer Vision 2, 7–32 (1988)CrossRefGoogle Scholar
  18. 18.
    Lee, H.C.: Method for computing the scene-illuminant chromaticity from specular highlights. Journal of the Optical Society of America A 3, 1694–1699 (1986)CrossRefGoogle Scholar
  19. 19.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 11(2), 431–441 (1963)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cong Phuoc Huynh
    • 1
  • Antonio Robles-Kelly
    • 1
    • 2
  1. 1.RSISE, Bldg. 115Australian National UniversityCanberraAustralia
  2. 2.National ICT Australia (NICTA)CanberraAustralia

Personalised recommendations