Abstract

Given a 3D binary voxel-based digital object V, an algorithm for computing homological information for V via a polyhedral cell complex is designed. By homological information we understand not only Betti numbers, representative cycles of homology classes and homological classification of cycles but also the computation of homology numbers related additional algebraic structures defined on homology (coproduct in homology, product in cohomology, (co)homology operations,...). The algorithm is mainly based on the following facts: a) a local 3D-polyhedrization of any 2×2×2 configuration of mutually 26-adjacent black voxels providing a coherent cell complex at global level; b) a description of the homology of a digital volume as an algebraic-gradient vector field on the cell complex (see Discrete Morse Theory [5], AT-model method [7,5]). Saving this vector field, we go further obtaining homological information at no extra time processing cost.

Keywords

Simplicial Complex Cell Complex Unit Cube Betti Number Gradient Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Biassoti, D., Giorgi, M., Falcidieno, B.: Reeb Graphs for Shape Analysis and Applications. Theoretical Computer Science 392(1-3), 5–22 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chen, L.: Topological structure in the perception of apparent motion. Perception 14(2), 197–208 (1985)CrossRefGoogle Scholar
  3. 3.
    Damiand, G., Peltier, S., Fuchs, L., Lienhardt, P.: Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Delfinado, C.J.A., Edelsbrunner, H.: An Incremental Algorithm for Betti Numbers of Simplicial Complexes on the 3–Sphere. Comput. Aided Geom. Design 12, 771–784 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Forman, R.: A Discrete Morse Theory for Cell Complexes. In: Yau, S.T. (ed.) Geometry, Topology & Physics for Raoul Bott. International Press (1995)Google Scholar
  6. 6.
    Gonzalez-Diaz, R., Medrano, B., Real, P., Sanchez-Pelaez, J.: Algebraic Topological Analysis pf Time-sequence of Digital Images. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 208–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Diaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math. 147, 245–263 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  9. 9.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Kenmochi, Y., Imiya, A., Ichikawa, A.: Boundary extraction of discrete objects. Computer Vision and Image Understanding 71, 281–293 (1998)CrossRefGoogle Scholar
  11. 11.
    Munkres, J.R.: Elements of Algebraic Topology. Addison–Wesley Co. (1984)Google Scholar
  12. 12.
    Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.O.: Computation of homology groups and generators. Computers & Graphics 30(1), 62–69 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Peltier, S., Ion, A., Haxhimusa, Y., Kropatsch, W.G., Damiand, G.: Computing Homology Group Generators of Images Using Irregular Graph Pyramids. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 283–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Real, P., González-Díaz, R., Jimenez, M.J., Medrano, B., Molina-Abril, H.: Integral Operators for Computing Homology Generators at Any Dimension. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 356–363. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Zomorodian, A., Carlsson, G.: Localized Homology. Computational Geometry: Theory & Applications (to appear)Google Scholar
  16. 16.
    Zomorodian, A.: Topology for Computing. Cambridge University Press, New York (2005)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Helena Molina-Abril
    • 1
  • Pedro Real
    • 1
  1. 1.Dpto. Matematica Aplicada I, E.T.S.I. InformaticaUniversidad de SevillaSevillaSpain

Personalised recommendations