Significance Tests and Statistical Inequalities for Region Matching

  • Guillaume Née
  • Stéphanie Jehan-Besson
  • Luc Brun
  • Marinette Revenu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5342)


Region matching - finding conjugate regions on a pair of images - plays a fundamental role in computer vision. Indeed, such methods have numerous applications such as indexation, motion estimation or tracking. In the vast literature on the subject, several dissimilarity measures have been proposed in order to determine the true match for each region. In this paper, under statistical hypothesis of similarity, we provide an improved decision rule for patch matching based on significance tests and the statistical inequality of McDiarmid. The proposed decision rule allows to validate or not the similarity hypothesis and so to automatically detect matching outliers. The approach is applied to motion estimation and object tracking on noisy video sequences. Note that the proposed framework is robust against noise, avoids the use of statistical tests and may be related to the a contrario approach.


  1. 1.
    Burrus, N., Bernard, T.M., Jolion, J.M.: Bottom-up and top-down object matching using asynchronous agents and a contrario principles. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 343–352. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Chan, M.H., Yu, Y.B., Constantinides, A.G.: Variable size block matching motion compensation with applicationsto video coding. IEEE Communications, Speech and Vision 137(4), 205–212 (1990)CrossRefGoogle Scholar
  3. 3.
    Coupier, D., Desolneux, A., Ycart, B.: Image denoising by statistical area thresholding. Journal of Mathematical Imaging and Vision 22(2-3), 183–197 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. International Journal of Computer Vision 40(1), 7–23 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Desolneux, A., Moisan, L., Morel, J.-M.: Computational Gestalts and perception thresholds. Journal of Physiology 97(2-3), 311–324 (2003)Google Scholar
  6. 6.
    Desolneux, A., Moisan, L., Morel, J.-M.: Maximal meaningful events and applications to image analysis. Annals of Statistics 31(6), 1822–1851 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Felip, R.L., Binefa, X., Diaz Caro, J.: A new parameter estimator based on the helmholtz principle. In: International Conference on Image Processing, pp. 1306–1309 (2005)Google Scholar
  8. 8.
    El Hassani, M., Jehan-Besson, S., Brun, L., et al.: Time-consistent video segmentation algorithm designed for real-time implementation. VLSI Design (2008)Google Scholar
  9. 9.
    Jain, J.R., Jain, A.K.: Displacement measurement and its application in interframe image coding. IEEE Transactions on Communications, 1799–1808 (1981)Google Scholar
  10. 10.
    McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Meyer, F., Bouthemy, P.: Region-based tracking using affine motion models in long image sequences. CVGIP: Image Understanding 60(2), 119–140 (1994)CrossRefGoogle Scholar
  12. 12.
    Musé, P., Sur, F., Cao, F., Gousseau, Y.: Unsupervised thresholds for shape matching. In: International Conference on Image Processing, pp. 647–650 (2003)Google Scholar
  13. 13.
    Musé, P., Sur, F., Cao, F., Gousseau, Y., Morel, J.-M.: An a contrario decision method for shape element recognition. International Journal on Computer Vision 69(3), 295–315 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Nock, R., Nielsen, F.: Statistical region merging. IEEE Pattern Analysis and Machine Intelligence 26(11), 1452–1458 (2004)CrossRefGoogle Scholar
  15. 15.
    Tilie, S., Laborelli, L., Bloch, I.: Blotch Detection for Digital Archives Restoration based on the Fusion of Spatial and Temporal Detectors. In: Fusion, Florence, Italy (2006)Google Scholar
  16. 16.
    Veit, T., Cao, F., Bouthemy, P.: An a contrario decision framework for region-based motion detection. International Journal on Computer Vision 68(2), 163–178 (2006)CrossRefGoogle Scholar
  17. 17.
    Werthmer, M.: Untersuchungen zur Lehre der Gestalt, ch. 4, vol. II, pp. 301–350. Psychologische of Forschung (1923)Google Scholar
  18. 18.
    Wiegand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 560–576 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guillaume Née
    • 1
    • 2
  • Stéphanie Jehan-Besson
    • 1
  • Luc Brun
    • 1
  • Marinette Revenu
    • 1
  1. 1.GREYC LaboratoryCaenFrance
  2. 2.General Electric HealthcareVelizyFrance

Personalised recommendations