Graph kernels methods are based on an implicit embedding of graphs within a vector space of large dimension. This implicit embedding allows to apply to graphs methods which where until recently solely reserved to numerical data. Within the shape classification framework, graphs are often produced by a skeletonization step which is sensitive to noise. We propose in this paper to integrate the robustness to structural noise by using a kernel based on a bag of path where each path is associated to a hierarchy encoding successive simplifications of the path. Several experiments prove the robustness and the flexibility of our approach compared to alternative shape classification methods.


Shape Skeleton Support Vector Machine Graph Kernel 


  1. 1.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.: Symmetry-based indexing of image databases. Journal of Visual Communication and Image Representation 9(4), 366–380 (1998)CrossRefGoogle Scholar
  2. 2.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vision 35(1), 13–32 (1999)CrossRefGoogle Scholar
  3. 3.
    Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Trans. on PAMI 21(11), 1105–1120 (1999)CrossRefGoogle Scholar
  4. 4.
    Bunke, H., Riesen, K.: A family of novel graph kernels for structural pattern recognition. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 20–31. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39, 1852–1863 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Suard, F., Rakotomamonjy, A., Bensrhair, A.: Kernel on bag of paths for measuring similarity of shapes. In: European Symposium on Artificial Neural Networks, Bruges-Belgique (April 2007)Google Scholar
  7. 7.
    Haasdonk, B.: Feature space interpretation of svms with indefinite kernels. IEEE PAMI 27(4), 482–492 (2005)CrossRefGoogle Scholar
  8. 8.
    Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE TSP 53(8), 2961–2974 (2005)MathSciNetGoogle Scholar
  9. 9.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernel between labeled graphs. In: Proc. of the Twentieth International conference on machine Learning (2003)Google Scholar
  10. 10.
    Ruberto, C.D.: Recognition of shapes by attributed skeletal graphs. Pattern Recognition 37(1), 21–31 (2004)CrossRefGoogle Scholar
  11. 11.
    Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Springer, Heidelberg (1984)CrossRefzbMATHGoogle Scholar
  12. 12.
    Giblin, P.J., Kimia, B.B.: On the local form and transitions of symmetry sets, medial axes, and shocks. In: Seventh Internat. Conf. on Computer Vision, pp. 385–391 (1999)Google Scholar
  13. 13.
    Torsello, A., Handcock, E.R.: A skeletal measure of 2d shape similarity. CVIU 95, 1–29 (2004)Google Scholar
  14. 14.
    Haussler, D.: Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz (1999)Google Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • François-Xavier Dupé
    • 1
  • Luc Brun
    • 1
  1. 1.GREYC UMR CNRS 6072ENSICAEN-Université de Caen Basse-NormandieCaenFrance

Personalised recommendations