Abstract

In this paper we explore how to characterise graphs using the Gauss-Bonnet theorem. Using the Gaussian curvatures estimated from first-order cycles we compute a global estimate of the Euler index using the Gauss-Bonnet theorem. We commence by embedding the nodes of a graph in a manifold using the heat-kernel mapping. From this mapping we are able to compute the geodesic and Euclidean distance between nodes, and these can be used to estimate the sectional curvatures of edges. Assuming that edges reside on hyper-spheres, we use Gauss’s theorem to estimate the Gaussian curvature from the interior angles of geodesic triangles formed by first-order cycles in the graph. From the Gaussian curvatures we make a global estimate of the Euler index of the manifold using the Gauss-Bonnet theorem. Experiments show how the Gaussian curvatures and the Euler characteristics can be used to cluster Delaunay triangulations extracted from real world images.

Keywords

Manifold embedding Heat kernel Hausdorff distance Gaussian curvature Graph matching 

References

  1. 1.
    Boykov, Y., Huttenlocher, D.: A new bayesian framework for object recognition. In: Proceeding of IEEE Computer Society Conference on CVPR, vol. 2, pp. 517–523 (1999)Google Scholar
  2. 2.
    Brooks, R.: Geometry, Spectral theory, Groups, and Dynamics. Amer. Mathematical Society (2005)Google Scholar
  3. 3.
    Dubuisson, M., Jain, A.: A modified hausdorff distance for object matching, pp. 566–568 (1994)Google Scholar
  4. 4.
    ElGhawalby, H., Hancock, E.R.: Measuring graph similarity using spectral geometry. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 517–526. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Gilikey, P.B.: Invariance Theory, The heat equation, and the Atiyah-Singer index Theorem. Publish or Parish Inc., USA (1984)Google Scholar
  6. 6.
    Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE. Trans. Pattern Anal. Mach. Intell. 15, 850–863 (1993)CrossRefGoogle Scholar
  7. 7.
    Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recogintion 36, 2213–2230 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Rosenberg, S.: The Laplacian on a Riemanian manifold. Cambridge University Press, Cambridge (2002)Google Scholar
  9. 9.
    Saucan, E., Appleboim, E.: Curvature based clustering for DNA microarray data analysis. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 405–412. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, 2nd edn., vol. 1-5. Publish or Parish, Houston (1979)MATHGoogle Scholar
  11. 11.
    Stillwell, J.: Mathematics and its History. Springer, New York (1974)MATHGoogle Scholar
  12. 12.
    Xiao, B., Hancock, E.R.: Heat kernel, riemannian manifolds and graph embedding. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 198–206. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Young, G., Householder, A.S.: Disscussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hewayda ElGhawalby
    • 1
    • 2
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkUK
  2. 2.Faculty of EngineeringSuez Canal universityEgypt

Personalised recommendations