Advertisement

Abstract

Finding the most relevant symmetry planes for an object is a key step in many computer vision and object recognition tasks. In fact such information can be effectively used as a starting point for object segmentation, noise reduction, alignment and recognition. Some of these applications are strongly affected by the accuracy of symmetry planes estimation, thus the use of a technique that is both accurate and robust to noise is critical. In this paper we introduce a new weighted association graph which relates the main symmetry planes of 3D objects to large sets of tightly coupled vertices. This technique allows us to cast symmetry detection to a classical pairwise clustering problem, which we solve using the very effective Dominant Sets framework. The improvement of our approach over other well known techniques is shown with several tests over both synthetic data and sampled point clouds.

Keywords

symmetry dominant sets shape registration clustering 

References

  1. 1.
    Atallah, M.J.: On symmetry detection. IEEE Trans. Computers 34(7), 663–666 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wolter, J.D., Woo, T.C., Volz, R.A.: Optimal algorithms for symmetry detection in two and three dimensions. The Visual Computer 1(1), 37–48 (1985)CrossRefzbMATHGoogle Scholar
  3. 3.
    Sun, C.: Symmetry detection using gradient information. Pattern Recogn. Lett. 16(9), 987–996 (1995)CrossRefGoogle Scholar
  4. 4.
    Shah, M.I., Sorensen, D.C.: A symmetry preserving singular value decomposition. SIAM J. Matrix Anal. Appl. 28(3), 749–769 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sun, C., Sherrah, J.: 3d symmetry detection using the extended gaussian image. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 164–168 (1997)CrossRefGoogle Scholar
  6. 6.
    Shen, D., Ip, H.H.S., Cheung, K.K.T., Teoh, E.K.: Symmetry detection by generalized complex (GC) moments: A close-form solution. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 466–476 (1999)CrossRefGoogle Scholar
  7. 7.
    Lu, C., Zhang, C., Wen, F., Yan, P.: Principle component analysis-based symmetry detection. Tien Tzu Hsueh Pao/Acta Electronica Sinica 27(5), 25–28 (1999); Cited By (since 1996): 4Google Scholar
  8. 8.
    Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(12), 1154–1166 (1995)CrossRefGoogle Scholar
  9. 9.
    Kulkarni, P., Dutta, D.: An investigation of techniques for asymmetry rectification. Journal of Mechanical Design 117(4), 620–626 (1995)CrossRefGoogle Scholar
  10. 10.
    Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context free attentional operators: the generalized symmetry transform. Int. J. of Computer Vision, Special Issue on Qualitative Vision (1994)Google Scholar
  11. 11.
    Choi, I., Chien, S.I.: A generalized symmetry transform with selective attention capability for specific corner angles. Signal Processing Letters, IEEE 11(2), 255–257 (2004)CrossRefGoogle Scholar
  12. 12.
    Bigün, J.: Pattern recognition in images by symmetries and coordinate transformations. Computer Vision and Image Understanding 68(3), 290–307 (1997)CrossRefGoogle Scholar
  13. 13.
    Gesú, V.D., Valenti, C., Strinati, L.: Local operators to detect regions of interest. Pattern Recogn. Lett. 18(11-13), 1077–1081 (1997)CrossRefGoogle Scholar
  14. 14.
    Loy, G., Zelinsky, A.: Fast radial symmetry for detecting points of interest. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 959–973 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3d shapes. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 549–559. ACM, New York (2006)Google Scholar
  16. 16.
    Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3d shapes. ACM Trans. Graph. 25(3), 549–559 (2006)CrossRefGoogle Scholar
  17. 17.
    Rustamov, R.M.: Augmented symmetry transforms. In: SMI 2007: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2007, Washington, DC, USA, pp. 13–20. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  18. 18.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  19. 19.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)CrossRefGoogle Scholar
  20. 20.
    Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism. Neural Comput. 11(8), 1933–1955 (1999)CrossRefGoogle Scholar
  21. 21.
    Rota Bulò, S., Torsello, A., Pelillo, M.: A continuous-based approach for partial clique enumeration. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 61–70. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrea Albarelli
    • 1
  • Marcello Pelillo
    • 1
  • Sebastiano Viviani
    • 2
  1. 1.Dipartimento di InformaticaUniversita’ Ca’ Foscari di VeneziaItaly
  2. 2.Evolvenda s.r.l.Italy

Personalised recommendations