Advertisement

Abstract

Sensors such as video surveillance and weather monitoring systems record a significant amount of dynamic data which are represented by vector fields. We present a novel algorithm to measure the similarity of vector fields using global distributions that capture both vector field properties (e.g., vector orientation) and relational geometric information (e.g., the relative positions of two vectors in the field). We show that such global distributions are capable of distinguishing between vector fields of varying complexity and can be used to quantitatively compare similar fields.

Keywords

vector field matching shape distribution geometric histogram 

References

  1. 1.
    Tovar, M.: Vector-field classification in magnetic-resonance angiography. In: Proc. of AMIA Symposium, pp. 926–930 (1998)Google Scholar
  2. 2.
    Pamudurthy, S., Guan, E., Mueller, K., Rafailovich, M.: Dynamic approach for face recognition using digital image skin correlation. Audio- and Video-based Biometric Person Authentication (2005)Google Scholar
  3. 3.
    Lu, X., Jain, A.: Deformation modeling for robust 3d face matching. In: Proc. of CVPR (2006)Google Scholar
  4. 4.
    Helman, J., Hesselink, L.: Surface representations of two- and three- dimensional fluid flow topology. In: Proc. of IEEE Visualization, pp. 6–13 (1990)Google Scholar
  5. 5.
    Scheuermann, G., Krüger, H., Menzel, M., Rockwood, A.: Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Graphics (TVCG) 4(2), 109–116 (1998)CrossRefGoogle Scholar
  6. 6.
    Tricoche, X., Scheuermann, G., Hagen, H.: Continuous topology simplification of planar vector fields. In: Proc. of IEEE Visualization, pp. 159–166 (2001)Google Scholar
  7. 7.
    Tricoche, X., Scheuermann, G., Hagen, H.: Topology-based visualization of time-dependent 2d vector fields. In: Data Visualization, Proc. of IEEE TVCG Symposium on Visualization, pp. 117–126 (2001)Google Scholar
  8. 8.
    Ebling, J., Scheuermann, G.: Clifford convolution and pattern matching on vector fields. In: Proc. of IEEE Visualization, pp. 193–200 (2003)Google Scholar
  9. 9.
    Zhang, E., Mischaikow, K., Turk, G.: Vector field design on surfaces. ACM Transactions on Graphics (TOG) 25(4), 1294–1326 (2006)CrossRefGoogle Scholar
  10. 10.
    Ankerst, M., Kastenmuller, G., Kriegel, H., Seidl, T.: 3d shape histograms for similarity search and classification in spatial databases. In: Proc. of 6th International Symposium on Spatial Databases (1999)Google Scholar
  11. 11.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. on Graphics 21(4), 807–832 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Roth, S., Black, M.: On the spatial statistics of optical flow. Int’l. J. of Computer Vision 74, 33–50 (2007)CrossRefGoogle Scholar
  13. 13.
    Laramee, R., Weiskopf, D., Schneider, J., Hauser, H.: Investigating swirl and tumble flow with a comparison of visualization techniques. In: Proc. of IEEE Visualization, pp. 51–58 (2004)Google Scholar
  14. 14.
    Ohbuchi, R., Minamitani, T., Takei, T.: Shape-similariy search of 3d models by using enhanced shape functions. In: Proc. Theory and Practice of Computer Graphics, pp. 97–104 (2003)Google Scholar
  15. 15.
  16. 16.
    Verma, V., Kao, D., Pang, A.: A flow-guided streamline seeding strategy. In: Proc. of IEEE Visualization, pp. 163–170 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • H. Quynh Dinh
    • 1
  • Liefei Xu
    • 1
  1. 1.Department of Computer ScienceStevens Institute of TechnologyUSA

Personalised recommendations