A Fast and Simple Heuristic for Metro Map Path Simplification

  • Tim Dwyer
  • Nathan Hurst
  • Damian Merrick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)


We give a heuristic for simplifying a path defined by a given sequence of points. The heuristic seeks to fit the points with a set of line segments aligned with a limited set of possible directions. Such “schematic path simplification” has application in automatically drawing simplified metro maps from geographic data. We show that a simple version of our algorithm produces reasonable results against real-world data and runs in linear time with respect to the number of points (assuming a small fixed number of possible directions). We then give some refinements to the algorithm which may improve the quality of the results but which significantly increase the worst-case time complexity.


Line Segment Priority Queue Simple Heuristic Layout Problem Adjacent Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hong, S.H., Merrick, D., do Nascimento, H.A.D.: The metro map layout problem. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 482–491. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Nöllenburg, M., Wolff, A.: A mixed-integer program for drawing high-quality metro maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Stott, J., Rodgers, P.: Metro map layout using multicriteria optimization. In: Proceedings of the 8th International Conference on Information Visualisation (IV 2004), pp. 355–362. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  4. 4.
    Burkhard, R., Meier, M., Rodgers, P., Smis, M., Stott, J.: Knowledge visualization: a comparative study between project tube maps and gantt charts. In: Tochtermann, K., Maurer, H. (eds.) Proceedings of the 5th International Conference on Knowledge Management, pp. 388–395. Know-Center, Austria (2005)Google Scholar
  5. 5.
    Hahn, W.C., Weinberg, R.A.: A subway map of cancer pathways. Nature Reviews Cancer 2 (2002)Google Scholar
  6. 6.
    Nesbitt, K.V.: Getting to more abstract places using the metro map metaphor. In: Proceedings of the 8th International Conference on Information Visualisation, pp. 488–493 (2004)Google Scholar
  7. 7.
    Merrick, D., Gudmunsson, J.: Path simplification for metro map layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 258–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Dwyer, T., Koren, Y., Marriott, K.: Stress majorization with orthogonal ordering constraints. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 141–152. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Neyer, G.: Line simplification with restricted orientations. In: Proceedings of the 6th International Workshop on Algorithms and Data Structures, pp. 13–24 (1999)Google Scholar
  10. 10.
    Alt, H., Godau, M.: Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications 5, 75–91 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Weiss, M.A.: Data Structures and Algorithm Analysis in Java. Addison Wesley Longman, Amsterdam (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tim Dwyer
    • 1
  • Nathan Hurst
    • 2
  • Damian Merrick
    • 3
  1. 1.Microsoft ResearchRedmondUSA
  2. 2.Adobe SystemsSan JoseUSA
  3. 3.XP SoftwareCanberraAustralia

Personalised recommendations