Advertisement

Real-Time Lip Contour Extraction and Tracking Using an Improved Active Contour Model

  • Jingying Chen
  • Bernard Tiddeman
  • Gang Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)

Abstract

We present an automatic lip contour extraction and tracking method based on an improved active contour model, which introduces a novel image gradient detection based on the segmented lip, tongue and oral cavity image obtained using a nonlinear transformation of the YCbCr color space and a novel entropy analysis based segmentation. The proposed method provides encouraging results with different mouth shapes (with the appearance of teeth, tongue and oral cavity) under various illuminations.

Keywords

Oral Cavity Active Contour Active Contour Model Active Shape Model Entropy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fu, Y., Li, R., Huang, T., Danielsen, M.: Real-Time Humanoid Avatar for Multimodal Human-Machine Interaction. In: Proceedings of the IEEE International Conference on Multimedia and Expo, Beijing, July, pp. 991–994 (2007)Google Scholar
  2. 2.
    Fasel, B., Luettin, J.: Automatic Facial Expression Analysis: A Survey. Pattern Recognition 36(1), 259–275 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Tiddeman, B., Perrett, D.: Moving Facial Image Transformations using Static 2D Prototypes. In: Proceedings of the 9-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2001 (W S C G 2001), Plzen, Czech Republic, February 5-9 (2001)Google Scholar
  4. 4.
    Matthews, I., Cootes, T.F., Bangham, J.A., Cox, S., Harvey, R.: Extraction of visual features for lipreading. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 198–213 (2002)CrossRefGoogle Scholar
  5. 5.
    Kass, M., Witkin, A., Terzopoulos, D.: Snake: active contour models. International Journal of Computer Vision 1(4), 321–331 (1987)CrossRefGoogle Scholar
  6. 6.
    Cohen, L.: On active contour models and balloons. CVGIP: Image Understanding 53(2), 211–218 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sugahara, K., Kishino M., Konishi, R.: Personal computer based real time lip reading system. In: Proceedings of Signal Processing, WCCC-ICSP, vol. 2, pp. 1341–1346 (2000) Google Scholar
  8. 8.
    Bernard, M., Holden, E., Owens, R.: Lip tracking using pattern matching snakes. In: Proceedings of the 5th Asian Conference on Computer Vision ACCV, pp. 273–278 (2002)Google Scholar
  9. 9.
    Jang, K.: Lip contour extraction based on active shape model and snakes. International Journal of Computer Science and Network Security 7(10), 148–153 (2007)Google Scholar
  10. 10.
    Seo, K., Kim, W., Oh, C., Lee, J.: Face detection and facial feature extraction using color snake. In: Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, pp. 457–462 (2002)Google Scholar
  11. 11.
    Schaub, H., Smith, C.: Color snakes for dynamic lighting conditions on mobile manipulation platforms. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, US, pp. 1272–1277 (2003)Google Scholar
  12. 12.
    Kou, P., Hillman, P., Hannah, J.: Improved lip fitting and tracking for model-based multimedia and coding. In: Proceedings of the IEE International Conference on Visual Information Engineering (VIE), UK, pp. 251–258 (2005)Google Scholar
  13. 13.
    Wakasugi, T., Nishiura, M., Fukui, K.: Robust lip contour extraction using separability of multi-dimensional distributions. In: Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, May, pp. 415–420 (2004)Google Scholar
  14. 14.
    Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color image. IEEE transactions on Pattern Analysis and Machine Intelligence 24(5), 696–706 (2002)CrossRefGoogle Scholar
  15. 15.
    Viola, P., Jones, M.: Robust real time object detection. In: Proceedings of the 2nd International Workshop on Statistical and Computational Theories of Vision-Modeling, Learning, Computing and Sampling, Vancouver, Canada (July 2001)Google Scholar
  16. 16.
    Teh, C.H., Chin, R.T.: On the detection of dominant points on digital curve. IEEE transactions on Pattern Analysis and Machine Intelligence 11(8), 859–872 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jingying Chen
    • 1
    • 2
  • Bernard Tiddeman
    • 2
  • Gang Zhao
    • 1
  1. 1.Engineering and Research Centre for Information Technology on EducationHuazhong Normal UniversityWuhanP.R. China
  2. 2.School of Computer ScienceUniversity of St AndrewsUK

Personalised recommendations