Contour Extraction Using Particle Filters

  • ChengEn Lu
  • Longin Jan Latecki
  • Guangxi Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)


This paper describes a novel approach to extract object region from an image by tracking the enclosing contour. We assume that the image is not complex, and it can be roughly partitioned into two parts with an intensity threshold. A lot of images (for example medical images) are in accord with this assumption. Global constraint (threshold) and local constraint (gradient) are integrated in a particle filter framework. We utilize the filter to track the optimal contour path pixel by pixel. The processing time depends only on the contour length and the number of particles used. Thus the proposed method is significantly faster than the very popular and time consuming method: Active Contour Models (“Snakes”). Both Snakes and our method are targeted for similar applications. Experimental results illustrate the validity and advantages of our method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vincent, L., Soille, P.: Watersheds in digital spaces - an efficient algorithm based on immersion simulations. PAMI 13, 583–598 (1991)CrossRefGoogle Scholar
  2. 2.
    Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. Int’l J. Comp. Vis. 50, 271–293 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: CVPR (2007)Google Scholar
  4. 4.
    Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Process 71, 131–139 (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Xie, X., Mirmehdi, M.: Rags: Region-aided geometric snake. IEEE Transactions on Image Processing 13, 640–652 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Canny, J.: A computational approach to edge detection. PAMI 8, 679–698 (1986)CrossRefGoogle Scholar
  7. 7.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI 26, 530–549 (2004)CrossRefGoogle Scholar
  8. 8.
    Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries. In: CVPR (2006)Google Scholar
  9. 9.
    Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Trans. Signal Processing 50, 174–188 (2002)CrossRefGoogle Scholar
  10. 10.
    Prez, P., Blake, A., Gangnet, M.: Jetstream: Probabilistic contour extraction with particles. In: ICCV, pp. 524–531 (2001)Google Scholar
  11. 11.
    Zhang, J., Collins, R., Liu, Y.: Representation and matching of articulated shapes. In: CVPR, vol. 2, pp. 342–349 (2004)Google Scholar
  12. 12.
    Fan, X., Qi, C., Liang, D., Huang, H.: Probabilistic contour extraction using hierarchical shape representation. In: ICCV, vol. 1, pp. 302–308 (2005)Google Scholar
  13. 13.
    Bai, X., Yang, X.W., Latecki, L.J.: Detection and recognition of contour parts based on shape similarity. Pattern Recognition 41, 2189–2199 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ostu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on System Man Cybernetics 9, 62–66 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • ChengEn Lu
    • 1
  • Longin Jan Latecki
    • 2
  • Guangxi Zhu
    • 1
  1. 1.Dept. of Electronics and Info. Eng.Huazhong Univ. of Scie. and Tech.China
  2. 2.Dept. of Computer and Info. SciencesTemple UniversityPhiladelphiaUSA

Personalised recommendations