Multi-dimensional Scale Saliency Feature Extraction Based on Entropic Graphs

  • P. Suau
  • F. Escolano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)


In this paper we present a multi-dimensional version of the Kadir and Brady scale saliency feature extractor, based on Entropic Graphs and Rényi alpha-entropy estimation. The original Kadir and Brady algorithm is conditioned by the curse of dimensionality when estimating entropy from multi-dimensional data like RGB intensity values. Our approach naturally allows to increase dimensionality, being its computation time slightly affected by the number of dimensions. Our computation time experiments, based on hyperspectral images composed of 31 bands, demonstrate that our approach can be applied to computer vision fields, i.e. hyperspectral or satellite imaging, that can not be solved by means of the original algorithm.


Shannon Entropy Hyperspectral Image Saliency Detection Local Entropy Entropy Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal on Computer Vision 65, 43–72 (2005)CrossRefGoogle Scholar
  2. 2.
    Park, S.J., Shin, J.K., Lee, M.: Biologically inspired saliency map model for bottom-up visual attention. In: Biologically Motivated Computer Vision: Second International Workshop, Tübingen, Germany, pp. 418–426 (2002)Google Scholar
  3. 3.
    van de Weijer, J., Gevers, T.: Boosting saliency in color image features. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, pp. 365–372 (2005)Google Scholar
  4. 4.
    Unnikrishnan, R., Hebert, M.: Extracting scale and illuminant invariant regions through color. In: 17th British Machine Vision Conference, Edinburgh, Scotland (2006)Google Scholar
  5. 5.
    Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45, 83–105 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence 27, 1615–1630 (2005)CrossRefGoogle Scholar
  7. 7.
    Newman, P., Cole, D., Ho, K.: Outdoor slam using visual appearance and laser ranging. In: IEEE International Conference on Robotics and Automation, Florida, USA, pp. 1180–1187 (2006)Google Scholar
  8. 8.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition, Wisconsin, USA, pp. 261–264 (2003)Google Scholar
  9. 9.
    Peñalver, A., Escolano, F., Sáez, J.M.: Ebem: An entropy-based em algorithm for gaussian mixture models. In: 18th International Conference on Pattern Recognition, Hong Kong, August 20-24, vol. (2), pp. 451–455 (2006)Google Scholar
  10. 10.
    Neemuchwala, H., Hero, A., Zabuawala, S., Carson, P.: Image registration methods in high-dimensional space. International Journal of Imaging Systems and Technology 16, 130–145 (2006)CrossRefGoogle Scholar
  11. 11.
    Hero, A.O., Michel, O.: Applications of spanning entropic graphs. IEEE Signal Processing Magazine 19, 85–95 (2002)CrossRefGoogle Scholar
  12. 12.
    Gilles, S.: Robust Description and Matching of Images. PhD thesis, University of Oxford (1998)Google Scholar
  13. 13.
    Kadir, T., Zisserman, A., Brady, M.: An affine invariant salient region detector. In: 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, vol. (1), pp. 228–241 (2004)Google Scholar
  14. 14.
    Kadir, T., Boukerroui, D., Brady, M.: An analysis of the scale saliency algorithm. Technical report, University of Oxford (2003)Google Scholar
  15. 15.
    Neemuchwala, H., Hero, A., Carson, P.: Image registration methods in high-dimensional space. International Jounal of Imaging Systems and Technology 16, 130–145 (2006)CrossRefGoogle Scholar
  16. 16.
    Henze, N., Penrose, M.: On the multivariate runs test. Annals of statistics 27, 290–298 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the wald-wolfowitz and smirnov two-sample tests. Annals of statistics 7, 697–717 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bentley, J.L.: K-d trees for semidynamic point sets. In: 6th Annual ACM Symposium on Computational Geometry, California, USA, pp. 187–197 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • P. Suau
    • 1
  • F. Escolano
    • 1
  1. 1.Robot Vision Group, Departamento de Ciencia de la Computación e IAUniversidad de AlicanteSpain

Personalised recommendations