A Context Dependent Distance Measure for Shape Clustering

  • Rolf Lakaemper
  • JingTing Zeng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5359)


We present a new similarity measure between a single shape and a shape group as a basis for shape clustering following the paradigm of context dependent shape comparison: clusters are generated in the context of a reference shape, defined by the query shape it is compared to. Tightly coupled, the distance measure is the basis for a soft k-means like framework to achieve robust clustering. Successful application of the system along with generation of shape prototypes is demonstrated in comparison to latest approaches using elastic deformation.


Distance Measure Geodesic Distance Reference Shape Cluster Framework Single Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 522–705 (2002)CrossRefGoogle Scholar
  2. 2.
    Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, vol. 1, pp. 26–33. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  3. 3.
    Bertel, S., Barkowsky, T., Engel, D., Freksa, C.: Computational modeling of reasoning with mental images: basic requirements. In: Fum, D., del Missier, F., Stocco, A. (eds.) Proceedings of the 7th International Conference on Cognitive Modeling, Trieste (ICCM 2006), pp. 50–55. Edizioni Goliardiche, Trieste (2006)Google Scholar
  4. 4.
    Joshi, S.H., Mio, W.: Statistical shape analysis: Clustering, learning, and testing. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 590–602 (2005); Member-Anuj Srivastava and Member-Xiuwen LiuCrossRefGoogle Scholar
  5. 5.
    Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations i: the components of two-dimensional shape and the reaction-diffusion space. Int. J. Comput. Vision 15(3), 189–224 (1995)CrossRefGoogle Scholar
  6. 6.
    Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)CrossRefGoogle Scholar
  7. 7.
    Lakaemper, R., Adluru, N., Latecki, L.J., Madhavan, R.: Multi robot mapping using force field simulation: Research articles. J. Field Robot. 24(8-9), 747–762 (2007)CrossRefGoogle Scholar
  8. 8.
    Luo, B., Robles-Kelly, A., Torsello, A., Wilson, R.C., Hancock, E.R.: Discovering shape categories by clustering shock trees. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 152–160. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vision 73(3), 307–324 (2007)CrossRefGoogle Scholar
  10. 10.
    Mokhtarian, F., Abbasi, S., Kittler, J.: Robust and efficient shape indexing through curvature scale space (1996)Google Scholar
  11. 11.
    Scott, C., Nowak, R.: Robust contour matching via the order-preserving assignment problem. IEEE Transactions on Image Processing 15(7), 1831–1838 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Super, B.J.: Fast correspondence-based system for shape retrieval. Pattern Recogn. Lett. 25(2), 217–225 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yankov, D., Keogh, E.: Manifold clustering of shapes. In: ICDM 2006: Proceedings of the Sixth International Conference on Data Mining, Washington, DC, USA, pp. 1167–1171. IEEE Computer Society, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rolf Lakaemper
    • 1
  • JingTing Zeng
    • 1
  1. 1.CIS DepartmentTemple UniversityUSA

Personalised recommendations