Skip to main content

Hydrodynamic Equations

  • Chapter
  • First Online:
Transport Equations for Semiconductors

Part of the book series: Lecture Notes in Physics ((LNP,volume 773))

  • 2297 Accesses

In Sect. 2.1, we have considered two different time scalings. In the diffusion scaling, assumed in Chaps. 5, 6, 7, and 8, the typical time is of the order of the time between two consecutive collisions divided by the square of the Knudsen number α2, which is supposed to be small compared to 1. In this chapter, we consider a shorter time scale. More precisely, we suppose that the typical time is of the order of the time between two scattering events divided by α. We show that with this scaling hydrodynamic equations can be derived. In contrast to the models of the previous chapters, hydrodynamic models are mathematically not of parabolic but of hyperbolic type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Lundstrom. Fundamentals of Carrier Transport. 2nd edition, Cambridge University Press, Cambridge, 2000.

    Book  Google Scholar 

  2. C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation. Springer, Vienna, 1989.

    Google Scholar 

  3. G. Baccarani and M. Wordeman. An investigation of steady state velocity overshoot effects in Si and GaAs devices. Solid State Electr. 28 (1985), 407–416.

    Article  ADS  Google Scholar 

  4. M. Rudan, A. Gnudi, and W. Quade. A generalized approach to the hydrodynamic model of semiconductor equations. In: G. Baccarani (ed.), Process and Device Modeling for Microelectronics, 109–154. Elsevier, Amsterdam, 1993.

    Google Scholar 

  5. T. Grasser. Non-parabolic macroscopic transport models for semiconductor device simulation. Physica A 349 (2005), 221–258.

    Article  ADS  Google Scholar 

  6. K. Bløtekjær. Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electr. Devices 17 (1970), 38–47.

    Article  Google Scholar 

  7. S.-C. Lee and T.-W. Tang. Transport coefficients for a silicon hydrodynamic model extracted from inhomogeneous Monte-Carlo calculations. Solid State Electr. 35 (1992), 561–569.

    Article  ADS  Google Scholar 

  8. A. Anile and V. Romano. Hydrodynamic modeling of charge transport in semiconductors. Meccanica 35 (2000), 249–296.

    Article  MATH  Google Scholar 

  9. C. Bardos, F. Golse, and C. Levermore. Fluid dynamical limits in kinetic equations. I. Formal derivations. J. Stat. Phys. 63 (1991), 323–344.

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Caflisch. The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33 (1980), 651–666.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. M. Lachowicz. On the initial layer and the existence theorem for the nonlinear Boltzmann equation. Math. Meth. Appl. Sci. 9 (1987), 342–366.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Nishida. Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. Math. Phys. 61 (1978), 119–148.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. S. Ukai and K. Asano. The Euler limit and the initial layer of the nonlinear Boltzmann equation. Hokkaido Math. J. 12 (1983), 311–332.

    MATH  MathSciNet  Google Scholar 

  14. H. Grad. Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equation. Proc. Amer. Math. Soc. 17 (1965), 154–183.

    MathSciNet  Google Scholar 

  15. A. De Masi, R.Esposito, and J. Lebowitz. Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Commun. Pure Appl. Math. 42 (1989), 1189–1214.

    Google Scholar 

  16. C. Bardos, F. Golse, and C. Levermore. Fluid dynamical limits in kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46 (1993), 667–753.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Cercignani. The Boltzmann Equation and Its Applications. Springer, Berlin, 1988.

    MATH  Google Scholar 

  18. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994.

    MATH  Google Scholar 

  19. P.-L. Lions, B. Perthame, and E. Souganidis. Existence of entropy solutions for the hyperbolic system of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun. Pure Appl. Math. 44 (1996), 599–638.

    Article  MathSciNet  Google Scholar 

  20. P.-L. Lions, B. Perthame, and E. Tadmor. Kinetic formulation for the isentropic gas dynamics and p-system. Commun. Math. Phys. 163 (1994), 415–431.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. A. Matsumura and T. Nishida. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89 (1983), 445–464.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. S. Cordier. Global solutions to the isothermal Euler-Poisson plasma model. Appl. Math. Letters 8 (1995), 19–24.

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Poupaud, M. Rascle, and J. Vila. Global solutions to the isothermal Euler-Poisson system with arbitrarily large data. J. Diff. Eqs. 123 (1995), 93–121.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors: The Cauchy problem. Proc. Roy. Soc. Edinb., Sect. A 125 (1995), 115–131.

    MATH  MathSciNet  Google Scholar 

  25. B. Zhang. Convergence of the Gudonov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices. Commun. Math. Phys. 157 (1993), 1–22.

    Article  MATH  ADS  Google Scholar 

  26. D. Wang and G.-Q. Chen. Formation of singularities in compressible Euler-Poisson fluids with heat diffusion and damping relaxation. J. Diff. Eqs. 144 (1998), 44–65.

    Article  MATH  Google Scholar 

  27. L. Yeh. Well-posedness of the hydrodynamic model for semiconductors. Math. Meth. Appl. Sci. 19 (1996), 1489–1507.

    Article  MATH  Google Scholar 

  28. I. Gamba. Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors. Commun. Part. Diff. Eqs. 17 (1992), 553–577.

    MATH  MathSciNet  Google Scholar 

  29. I. Gamba and C. Morawetz. A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence theorem for potential flow. Commun. Pure Appl. Math. 49 (1996), 999–1049.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Anile, V. Romano, and G. Russo. Extended hydrodynamical model of carrier transport in semiconductors. SIAM J. Appl. Math. 61 (2000), 74–101.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, Basel, :1990.

    Google Scholar 

  32. E. Fatemi, J. Jerome, and S. Osher. Solution of the hydrodynamic device model using high-order nonoscillatory shock-capturing algorithms. IEEE Trans. Computer-Aided Design 10 (1991), 232–244.

    Article  Google Scholar 

  33. L. Ballestra and R. Sacco. Numerical problems in semiconductor simulation using the hydrodynamic model: a second-order finite difference scheme. J. Comput. Phys. 195 (2004), 320–340.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. M. Fortin and G. Yang. Simulation of the hydrodynamid model of semiconductor devices by a finite element method. COMPEL 15 (1996), 4–21.

    MATH  Google Scholar 

  35. A. Anile, N. Nikiforakis, and R. Pidatella. Assessment of a high resolution centered scheme for the solution of hydrodynamic semiconductor equations. SIAM J. Sci. Comput. 22 (2000), 1533–1548.

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Jüngel and S. Tang. A relaxation scheme for the hydrodynamic equations for semiconductors. Appl. Numer. Math. 43 (2002), 229–252.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Anile and V. Romano. Non parabolic transport in semiconductors: closure of the moment equations. Continuum Mech. Thermodyn. 11 (1999), 307–325.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr. Characterization of the hot electron distribution function using six moments. J. Appl. Phys. 91 (2002), 3869–3879.

    Article  ADS  Google Scholar 

  39. M. Nekovee, B. Guerts, H. Boots, and M. Schuurmans. Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures. Phys. Rev. B 45 (1992), 6643–6651.

    Article  ADS  Google Scholar 

  40. A. Bringer and G. Schön. Extended moment equations for electron transport in semiconducting submicron structures. J. Appl. Phys. 64 (1988), 2447–2455.

    Article  ADS  Google Scholar 

  41. T. Portengen, M. Boots, and M. Schuurmans. A priori incorporation of ballistic and heating effects in a four-moment approach to the Boltzmann equation. J. Appl. Phys. 68 (1990), 2817–2823.

    Article  ADS  Google Scholar 

  42. H. Struchtrup. Extended moments method for electrons in semiconductors. Physica A 275 (2000), 229–255.

    Article  ADS  Google Scholar 

  43. S. Liotta and H. Struchtrup. Moment equations for electrons in semiconductors: comparison of spherical harmonics and full moments. Solid State Electr. 44 (2000), 95–103.

    Article  ADS  Google Scholar 

  44. V. Romano. Non parabolic band transport in semiconductors: closure of the production terms in the moment equations. Continuum Mech. Thermodyn. 12 (2000), 31–51.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. G. Mascali and V. Romano. Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle. Continuum Mech. Thermodyn. 14 (2002), 405–423.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. G. Mascali and V. Romano. Simulation of Gunn oscillations with a nonparabolic hydrodynamical model based on the maximum entropy principle. COMPEL 24 (2005), 35–54.

    MATH  Google Scholar 

  47. P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rat. Mech. Anal. 129 (1995), 129–145.

    Article  MATH  MathSciNet  Google Scholar 

  48. C. Lattenzio. On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit. Math. Models Meth. Appl. Sci. 10 (2000), 351–360.

    Google Scholar 

  49. C. Lattanzio and P. Marcati. The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors. Discrete Contin. Dyn. Sys. 5 (1999), 449–455.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Jüngel and Y.-J. Peng. A hierarchy of hydrodynamic models for plasmas: zero-relaxation-time limits. Commun. Part. Diff. Eqs. 24 (1999), 1007–1033.

    Article  MATH  Google Scholar 

  51. A. Jüngel and Y.-J. Peng. Zero-relaxation-time limits in hydrodynamic models for plasmas revisited. Z. Angew. Math. Phys. 51 (2000), 385–396.

    Article  MATH  MathSciNet  Google Scholar 

  52. W.-A. Yong. Diffusive relaxation limit of multidimensional isentropic hydrodynamic models for semiconductors. SIAM J. Appl. Math. 64 (2004), 1737–1748.

    Article  MATH  MathSciNet  Google Scholar 

  53. S. Junca and M. Rascle. Relaxation of the isothermal Euler-Poisson system to the drift-diffusion equations. Quart. Appl. Math. 58 (2000), 511–521.

    MATH  MathSciNet  Google Scholar 

  54. G.-Q. Chen, J. Jerome, and B. Zhang. Particle hydrodynamic moment models in biology and microelectronics: singular relaxation limits. Nonlin. Anal. 30 (1997), 233–244.

    Article  MATH  MathSciNet  Google Scholar 

  55. I. Gasser and R. Natalini. The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors. Quart. Appl. Math. 57 (1999), 269–282.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüngel, A. (2009). Hydrodynamic Equations. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89526-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89525-1

  • Online ISBN: 978-3-540-89526-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics