Skip to main content

Diffusive Higher-Order Moment Equations

  • Chapter
  • First Online:
Transport Equations for Semiconductors

Part of the book series: Lecture Notes in Physics ((LNP,volume 773))

  • 2273 Accesses

The drift-diffusion and energy-transport equations of Chaps. 5 and 6 are derived from the Boltzmann equation by considering the moments\( n = \int_B F\frac{\mathrm{d} k}{4\pi^3}, \quad ne = \int_B F E(k)\frac{\mathrm{d}k}{4\pi^3},\)where F is the distribution function. We have already indicated in Sect. 2.4 that this strategy can be generalized. In this chapter, we detail the derivation of a hierarchy of diffusive moment models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Jüngel, S. Krause, and P. Pietra. A hierarchy of diffusive higher-order moment equations for semiconductors. SIAM J. Appl. Math. 68 (2007), 171–198.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Struchtrup. Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. SIAM Multiscale Model. Simul. 3 (2005), 221–243.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Ihara. Information Theory for Continuous Systems. World Scientific, Singapore, 1993.

    MATH  Google Scholar 

  4. W. Dreyer, M. Junk, and M. Kunik. On the approximation of kinetic equations by moment systems. Nonlinearity 14 (2001), 881–906.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. M. Junk. Domain of definition of Levermore’s five-moment system. J. Stat. Phys. 93 (1998), 1143–1167.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. J. Schneider. Entropic approximation in kinetic theory. ESAIM: Math. Mod. Numer. Anal. 38 (2004), 541–561.

    Article  MATH  Google Scholar 

  7. T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr. Characterization of the hot electron distribution function using six moments. J. Appl. Phys. 91 (2002), 3869–3879.

    Article  ADS  Google Scholar 

  8. T. Grasser. Non-parabolic macroscopic transport models for semiconductor device simulation. Physica A 349 (2005), 221–258.

    Article  ADS  Google Scholar 

  9. K. Sonoda, M. Yamaji, K. Taniguchi, C. Hamaguchi, and S. Dunham. Moment expansion approach to calculate impact ionization rate in submicron silicon devices. J. Appl. Phys. 80 (1996), 5444–5448.

    Article  ADS  Google Scholar 

  10. T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr. Using six moments of Boltzmann’s equation for device simulation. J. Appl. Phys. 90 (2001), 2389–2396.

    Article  ADS  Google Scholar 

  11. N. Ben Abdallah and P. Degond. On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37 (1996), 3308–3333.

    Google Scholar 

  12. P. Degond, A. Jüngel, and P. Pietra. Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22 (2000), 986–1007.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Holst, A. Jüngel, and P. Pietra. A mixed finite-element discretization of the energy-transport equations for semiconductors. SIAM J. Sci. Comput. 24 (2003), 2058–2075.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Grasser, H. Kosina, and S. Selberherr. Hot carrier effects within macroscopic transport models. Internat. J. High Speed Electr. Sys. 13 (2003), 873–901.

    Article  Google Scholar 

  15. T. Grasser, R. Kosik, v. Jungemann, H. Kosina, and S. Selberherr. Nonparabolic macroscopic transport models for device simulation based on bulk Monte Carlo data. J. Appl. Phys. 97 (2005), 093710.

    Article  ADS  Google Scholar 

  16. M. Junk and V. Romano. Maximum entropy moment systems of the semiconductor Boltzmann equation using Kane’s dispersion relation. Continuum Mech. Thermodyn. 17 (2004), 247-267.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jüngel, A. (2009). Diffusive Higher-Order Moment Equations. In: Transport Equations for Semiconductors. Lecture Notes in Physics, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89526-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89526-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89525-1

  • Online ISBN: 978-3-540-89526-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics